Purdue University Logo
Department of Horticulture and Landscape Architecture
 
Horticulture Home Page
Agriculture Home Page
Purdue Home Page
Blackboard
HORT640 Home Page
N Use By Plants
Nitrate Assimilation
Ammonia Assimilation
Glu, Gln, Asn, Gly, Ser
Aminotransferases
Asp, Ala, GABA
Val, Leu, Ileu, Thr, Lys
Pro, Arg, Orn
Polyamines
Non-protein AAs
Alkaloids
Sulfate Assimilation
Cys, Met, AdoMet, ACC
His, Phe, Tyr, Tryp
Secondary Products
Onium Compounds
Enzymes
Methods
Simulation
References
HORT640 - Metabolic Plant Physiology

References, nitrate reductase

Abaibou H, Pommier J, Benoit S, Giordano G, Mandrand-Berthelot MA. Expression and characterization of the Escherichia coli fdo locus and a possible physiological role for aerobic formate dehydrogenase. J. Bacteriol. 177: 7141-7149 (1995).

Abd-El Baki GK, Siefritz F, Man H-M, Weiner H, Kaldenhoff R, Kaiser WM. Nitrate reductase in Zea mays L. under salinity. Plant Cell Environ. 23: 515-521 (2000).

Achebach S, Tran QH, Vlamis-Gardikas A, Mullner M, Holmgren A, Unden G. Stimulation of Fe-S cluster insertion into apoFNR by Escherichia coli glutaredoxins 1, 2 and 3 in vitro. FEBS Lett. 565: 203-206 (2004).

Aducci P, Camoni L, Marra M, Visconti S. From cytosol to organelles: 14-3-3 proteins as multifunctional regulators of plant cell. IUBMB Life 53: 49-55 (2002).

Afshar S, Kim C, Monbouquette HG, Schroder I. Effect of tungstate on nitrate reduction by the hyperthermophilic archaeon Pyrobaculum aerophilum. Appl. Environ. Microbiol. 64: 3004-3008 (1998).

Aguera E, Ruano D, Cabello P, de la Haba P. Impact of atmospheric CO(2) on growth, photosynthesis and nitrogen metabolism in cucumber (Cucumis sativus L.) plants. J. Plant Physiol. 163: 809-817 (2006).

Aguilar M, Kalakoutskii K, Cardenas J, Fernandez E. Direct transfer of molybdopterin cofactor to aponitrate reductase from a carrier protein in Chlamydomonas reinhardtii. FEBS Lett. 307: 162-163 (1992).

Aguilar MR, Cardenas J, Fernandez E. Regulation of molybdenum cofactor species in the green alga Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1073: 463-469 (1991).

Ahmad A, Abraham G, Abdin MZ. Biochemical evaluation of sulfur and nitrogen assimilation potential of mustard (Brassica juncea L. Czern. & Coss.) under application of slow-release sulfur fertilizer. Appl. Biochem. Biotechnol. 96: 167-172 (2001).

Ahuja G, Khattar JS, Sarma TA. Interaction between carbon and nitrogen metabolism during akinete development in the cyanobacterium Anabaena torulosa. J. Basic Microbiol. 48: 125-129 (2008).

Aichi M, Yoshihara S, Yamashita M, Maeda SI, Nagai K, Omata T. Characterization of the nitrate-nitrite transporter of the major facilitator superfamily (the nrtP gene product) from the cyanobacterium Nostoc punctiforme strain ATCC 29133. Biosci. Biotechnol. Biochem. 70: 2682-2689 (2006).

Aidar MPM, Schmidt S, Moss G, Stewart GR, Joly CA. Nitrogen use strategies of neotropical rainforest trees in threatened Atlantic Forest. Plant Cell Environ. 26: 389-399 (2003).

Akaba S, Leydecker MT, Moureaux T, Oritani T, Koshiba T. Aldehyde oxidase in wild type and aba1 mutant leaves of Nicotiana plumbaginifolia. Plant Cell Physiol. 39: 1281-1286 (1998).

Akyol I, Shearman CA. Regulation of flpA, flpB and rcfA Promoters in Lactococcus lactis. Curr. Microbiol. 57: 200-205 (2008).

Albassam BA. Inhibition of wheat leaf nitrate reductase activity by phenolic compounds. Biosci. Biotechnol. Biochem. 64: 1507-1510 (2000).

Alboresi A, Gestin C, Leydecker MT, Bedu M, Meyer C, Truong HN. Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell Environ. 28: 500-512 (2005).

Allegre A, Silvestre J, Morard P, Kallerhoff J, Pinelli E. Nitrate reductase regulation in tomato roots by exogenous nitrate: a possible role in tolerance to long-term root anoxia. J. Exp. Bot. 55: 2625-2634 (2004).

Amaar YG, Moore MM. Mapping of the nitrate-assimilation gene cluster (crnA-niiA-niaD) and characterization of the nitrite reductase gene (niiA) in the opportunistic fungal pathogen Aspergillus fumigatus. Curr. Genet. 33: 206-215 (1998).

Amey RC, Athey-Pollard A, Mills PR, Foster GD, Bailey A. Investigations into the taxonomy of the mushroom pathogen Verticillium fungicola and its relatives based on sequence analysis of nitrate reductase and ITS regions. Mikrobiologiia 76: 853-864 (2007).

Amon J, Titgemeyer F, Burkovski A. A genomic view on nitrogen metabolism and nitrogen control in mycobacteria. J. Mol. Microbiol. Biotechnol. 17: 20-29 (2009).

Amrani L, Primus J, Glatigny A, Arcangeli L, Scazzocchio C, Finnerty V. Comparison of the sequences of the Aspergillus nidulans hxB and Drosophila melanogaster ma-l genes with nifS from Azotobacter vinelandii suggests a mechanism for the insertion of the terminal sulphur atom in the molybdopterin cofactor. Mol. Microbiol. 38: 114-125 (2000).

Amutan M, Nyyssonen E, Stubbs J, Diaz-Torres MR, Dunn-Coleman N. Identification and cloning of a mobile transposon from Aspergillus niger var. awamori. Curr. Genet. 29: 468-473 (1996).

Anderson LJ, Richardson DJ, Butt JN. Using direct electrochemistry to probe rate limiting events during nitrate reductase turnover. Faraday Discuss. 116: 155-169 (2000).

Anke M, Seifert M. The biological and toxicological importance of molybdenum in the environment and in the nutrition of plants, animals and man. Part 1: Molybdenum in plants. Acta Biol. Hung. 58: 311-324 (2007).

Antipov AN, Lyalikova NN, Khijniak TV, L'vov NP. Molybdenum-free nitrate reductases from vanadate-reducing bacteria. FEBS Lett. 441: 257-260 (1998).

Antipov AN, Lyalikova NN, Khijniak TV, L'vov NP. Vanadate reduction by molybdenum-free dissimilatory nitrate reductases from vanadate-reducing bacteria. IUBMB Life 50: 39-42 (2000).

Antipov AN, Lyalikova NN, Khiznjak TV, L'vov NP. Some properties of dissimilatory nitrate reductases lacking molybdenum and molybdenum cofactor. Biochemistry (Mosc.) 64: 483-487 (1999).

Antipov AN, Morozkina EV, Sorokin DY, Golubeva LI, Zvyagilskaya RA, L'vov NP. Characterization of molybdenum-free nitrate reductase from haloalkalophilic bacterium Halomonas sp. strain AGJ 1-3. Biochemistry (Mosc.) 70: 799-803 (2005).

Antipov AN, Sorokin DY, L'vov NP, Kuenen JG. New enzyme belonging to the family of molybdenum-free nitrate reductases. Biochem. J. 369: 185-189 (2003).

Appenroth K, Meco R, Jourdan V V, Lillo C. Phytochrome and post-translational regulation of nitrate reductase in higher plants. Plant Sci. 159: 51-56 (2000).

Arendsen AF, Soliman MQ, Ragsdale SW. Nitrate-dependent regulation of acetate biosynthesis and nitrate respiration by Clostridium thermoaceticum. J. Bacteriol. 181: 1489-1495 (1999).

Argandona M, Martinez-Checa F, Llamas I, Arco Y, Quesada E, Del Moral A. A membrane-bound nitrate reductase encoded by the narGHJI operon is responsible for anaerobic respiration in Halomonas maura. Extremophiles 10: 411-419 (2006).

Arias-Negrete S, Jimenez-Romero LA, Soliis-Martiinez MO, Ramiirez-Emiliano J, Avila EE, Cuellar-Mata P. Indirect determination of nitric oxide production by reduction of nitrate with a freeze-thawing-resistant nitrate reductase from Escherichia coli MC1061. Anal. Biochem. 328: 14-21 (2004).

Arndt SK, Clifford SC, Wanek W, Jones HG, Popp M. Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress. Tree Physiol. 21: 705-715 (2001).

Arnoux P, Sabaty M, Alric J, Frangioni B, Guigliarelli B, Adriano JM, Pignol D. Structural and redox plasticity in the heterodimeric periplasmic nitrate reductase. Nat. Struct. Biol. 10: 928-934 (2003).

Arroniz-Crespo M, Leake JR, Horton P, Phoenix GK. Bryophyte physiological responses to, and recovery from, long-term nitrogen deposition and phosphorus fertilisation in acidic grassland. New Phytol. 180: 864-874 (2008).

Ashraf M, Bashir A. Salt stress induced changes in some organic metabolites and ionic relations in nodules and other plant parts of two crop legumes differing in salt tolerance. Flora 198: 486-498 (2003).

Aslam M, Harbit KB, Huffaker RC. Comparative effects of selenite and selenate on nitrate assimilation in barley seedlings. Plant Cell Environ. 13: 773-782 (1990).

Aslam M, Huffaker RC. Role of nitrate and nitrite in the induction of nitrite reductase in leaves of barley seedlings. Plant Physiol. 91: 1152-1156 (1989).

Aslam M, Rosichan JL, Huffaker RC. Comparative induction of nitrate reductase by nitrate and nitrite in barley leaves. Plant Physiol. 83: 579-584 (1987).

Aslam M, Travis RL, Huffaker RC. Comparative induction of nitrate and nitrite uptake and reduction systems by ambient nitrate and nitrite in intact roots of barley (Hordeum vulgare L.) seedlings. Plant Physiol. 102: 811-819 (1993).

Aslam M, Travis RL, Rains DW. Differential effect of amino acids on nitrate uptake and reduction systems in barley roots. Plant Sci. 160: 219-228 (2001).

Astolfi S, Zuchi S, Passera C. Role of sulphur availability on cadmium-induced changes of nitrogen and sulphur metabolism in maize (Zea mays L.) leaves. J. Plant Physiol. 161: 795-802 (2004).

Athwal GS, Huber JL, Huber SC. Phosphorylated nitrate reductase and 14-3-3 proteins. Site of interaction, effects of ions, and evidence for an AMP-binding site on 14-3-3 proteins. Plant Physiol. 118: 1041-1048 (1998).

Athwal GS, Huber JL, Huber SC. Biological significance of divalent metal ion binding to 14-3-3 proteins in relationship to nitrate reductase inactivation. Plant Cell Physiol. 39: 1065-1072 (1998).

Athwal GS, Huber SC. Divalent cations and polyamines bind to loop 8 of 14-3-3 proteins, modulating their interaction with phosphorylated nitrate reductase. Plant J. 29: 119-129 (2002).

Athwal GS, Lombardo CR, Huber JL, Masters SC, Fu H, Huber SC. Modulation of 14-3-3 protein interactions with target polypeptides by physical and metabolic effectors. Plant Cell Physiol. 41: 523-533 (2000).

Augier V, Asso M, Guigliarelli B, More C, Bertrand P, Santini CL, Blasco F, Chippaux M, Giordano G. Removal of the high-potential [4Fe-4S] center of the beta-subunit from Escherichia coli nitrate reductase. Physiological, biochemical, and EPR characterization of site-directed mutated enzymes. Biochemistry 32: 5099-5108 (1993).

Augier V, Guigliarelli B, Asso M, Bertrand P, Frixon C, Giordano G, Chippaux M, Blasco F. Site-directed mutagenesis of conserved cysteine residues within the beta subunit of Escherichia coli nitrate reductase. Physiological, biochemical, and EPR characterization of the mutated enzymes. Biochemistry 32: 2013-2023 (1993).

Avila J, Gonzalez C, Brito N, Machin M F, Perez D, Siverio JM. A second Zn(II)(2)Cys(6) transcriptional factor encoded by the YNA2 gene is indispensable for the transcriptional activation of the genes involved in nitrate assimilation in the yeast Hansenula polymorpha. Yeast 19: 537-544 (2002).

Avila J, Gonzalez C, Brito N, Siverio JM. Clustering of the YNA1 gene encoding a Zn(II)2Cys6 transcriptional factor in the yeast Hansenula polymorpha with the nitrate assimilation genes YNT1, YNI1 and YNR1, and its involvement in their transcriptional activation. Biochem. J. 335: 647-652 (1998).

Bachmann M, Huber JL, Athwal GS, Wu K, Ferl RJ, Huber SC. 14-3-3 proteins associate with the regulatory phosphorylation site of spinach leaf nitrate reductase in an isoform-specific manner and reduce dephosphorylation of Ser-543 by endogenous protein phosphatases. FEBS Lett. 398: 26-30 (1996).

Bachmann M, Huber JL, Liao PC, Gage DA, Huber SC. The inhibitor protein of phosphorylated nitrate reductase from spinach (Spinacia oleracea) leaves is a 14-3-3 protein. FEBS Lett. 387: 127-131 (1996).

Bachmann M, McMichael RW Jr, Huber JL, Kaiser WM, Huber SC. Partial purification and characterization of a calcium-dependent protein kinase and an inhibitor protein required for inactivation of spinach leaf nitrate reductase. Plant Physiol. 108: 1083-1091 (1995).

Bachmann M, Shiraishi N, Campbell WH, Yoo BC, Harmon AC, Huber SC. Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase. Plant Cell 8: 505-517 (1996).

Bageshwar UK, Raina R, Das HK. Characterization of a spontaneous mutant of Azotobacter vinelandii in which vanadium-dependent nitrogen fixation is not inhibited by molybdenum. FEMS Microbiol. Lett. 162: 161-167 (1998).

Bailly J, Debaud JC, Verner MC, Plassard C, Chalot M, Marmeisse R, Fraissinet-Tachet L. How does a symbiotic fungus modulate expression of its host-plant nitrite reductase? New Phytol. 175: 155-165 (2007).

Balakumar T, Sathiameena K, Selvakumar V, Ilanchezhian CM, Paliwal K. UV-B radiation mediated alterations in the nitrate assimilation pathway of crop plants. 2. Kinetic characteristics of nitrite reductase. Photosynthetica 37: 469-475 (1999).

Balakumar T, Selvakumar V, Sathiameena K, Ilanchezhian CM, Paliwal K. UV-B radiation mediated alterations in the nitrate assimilation pathway of crop plants. 1. Kinetic characteristics of nitrate reductase. Photosynthetica 37: 459-467 (1999).

Baltes N, Hennig-Pauka I, Jacobsen I, Gruber AD, Gerlach GF. Identification of dimethyl sulfoxide reductase in Actinobacillus pleuropneumoniae and its role in infection. Infect. Immun. 71: 6784-6792 (2003).

Banks GR, Shelton PA, Kanuga N, Holden DW, Spanos A. The Ustilago maydis nar1 gene encoding nitrate reductase activity: sequence and transcriptional regulation. Gene 131: 69-78 (1993).

Barabas NK, Omarov RT, Erdei L, Lips SH. Distribution of the Mo-enzymes aldehyde oxidase, xanthine dehydrogenase and nitrate reductase in maize (Zea mays L.) nodal roots as affected by nitrogen and salinity. Plant Sci. 155: 49-58 (2000).

Barber MJ. Altered pyridine nucleotide specificity of spinach nitrate reductase. FASEB J. 14: 599 (2000).

Barber MJ, Desai SK, Marohnic CC. Assimilatory nitrate reductase: lysine 741 participates in pyridine nucleotide binding via charge complementarity. Arch. Biochem. Biophys. 394: 99-110 (2001).

Barber MJ, Desai SK, Marohnic CC, Hernandez HH, Pollock VV. Synthesis and bacterial expression of a gene encoding the heme domain of assimilatory nitrate reductase. Arch. Biochem. Biophys. 402: 38-50 (2002).

Barber MJ, Kay CJ. Superoxide production during reduction of molecular oxygen by assimilatory nitrate reductase. Arch. Biochem. Biophys. 326: 227-232 (1996).

Barber MJ, Neame PJ. A conserved cysteine in molybdenum oxotransferases. J. Biol. Chem. 265: 20912-20915 (1990).

Barber MJ, Trimboli AJ, Nomikos S, Smith ET. Direct electrochemistry of the flavin domain of assimilatory nitrate reductase: effects of NAD+ and NAD+ analogs. Arch. Biochem. Biophys. 345: 88-96 (1997).

Barbier GG, Campbell WH. Viscosity effects on eukaryotic nitrate reductase activity. J. Biol. Chem. 280: 26049-26054 (2005).

Barbier GG, Joshi RC, Campbell ER, Campbell WH. Purification and biochemical characterization of simplified eukaryotic nitrate reductase expressed in Pichia pastoris. Protein Expr. Purif. 37: 61-71 (2004).

Barriuso-Iglesias M, Schluesener D, Barreiro C, Poetsch A, Martin JF. Response of the cytoplasmic and membrane proteome of Corynebacterium glutamicum ATCC 13032 to pH changes. BMC Microbiol. 8: 225 (2008).

Basra AS, Dhawan AK, Goyal SS. DCMU inhibits in vivo nitrate reduction in illuminated barley (C3) leaves but not in maize (C4): A new mechanism for the role of light? Planta 215: 855-861 (2002).

Basu P, Nemykin VN, Sengar RS. Syntheses, spectroscopy, and redox chemistry of encapsulated Oxo-Mo(V) centers: implications for pyranopterin-containing molybdoenzymes. Inorg. Chem. 42: 7489-7501 (2003).

Baudouin E, Charpenteau M, Ranjeva R, Ranty B. A 45-kDa protein kinase related to mitogen-activated protein kinase is activated in tobacco cells treated with a phorbol ester. Planta 214: 400-405 (2002).

Bauer GA, Bernton GM. Ammonium and nitrate acquisition by plants in response to elevated CO2 concentration: the roles of root physiology and architecture. Tree Physiol. 21: 137-144 (2001).

Baurain D, Dinant M, Coosemans N, Matagne RF. Regulation of the alternative oxidase Aox1 gene in Chlamydomonas reinhardtii. Role of the nitrogen source on the expression of a reporter gene under the control of the Aox1 promoter. Plant Physiol. 131: 1418-1430 (2003).

Becker TW, Carrayol E, Hirel B. Glutamine synthetase and glutamate dehydrogenase isoforms in maize leaves: localization, relative proportion and their role in ammonium assimilation or nitrogen transport. Planta 211: 800-806 (2000).

Beclin C, Berthome R, Palauqui JC, Tepfer M, Vaucheret H. Infection of tobacco or Arabidopsis plants by CMV counteracts systemic post-transcriptional silencing of nonviral (trans)genes. Virology 252: 313-317 (1998).

Bedmar EJ, Robles EF, Delgado MJ. The complete denitrification pathway of the symbiotic, nitrogen-fixing bacterium Bradyrhizobium japonicum. Biochem. Soc. Trans. 33: 141-144 (2005).

Bedzyk L, Wang T, Ye RW. The periplasmic nitrate reductase in Pseudomonas sp. strain G-179 catalyzes the first step of denitrification. J. Bacteriol. 181: 2802-2806 (1999).

Behrenfeld MJ, Prasil O, Babin M, Bruyant F. In search of a physiological basis for covariations in light-limited and light-saturated photosynthesis. J. Phycol. 40: 4-25 (2004).

Belbahri L, Chevalier L, Bensaddek L, Gillet F, Fliniaux MA, Boerjan W, Inze D, Thomas D, Thomasset B. Different expression of an S-adenosylmethionine synthetase gene in transgenic tobacco callus modifies alkaloid biosynthesis. Biotechnol. Bioeng. 69: 11-20 (2000).

Beligni MV, Lamattina L. Nitric oxide in plants: the history is just beginning. Plant Cell Environ. 24: 267-278 (2001).

Bell CI, Clarkson DT, Cram WJ. Partitioning and redistribution of sulfur during S-stress in Macroptilium atropurpureum cv Siratro. J. Exp. Bot. 46: 73-81 (1995).

Bell LC, Page MD, Berks BC, Richardson DJ, Ferguson SJ. Insertion of transposon Tn5 into a structural gene of the membrane-bound nitrate reductase of Thiosphaera pantotropha results in anaerobic overexpression of periplasmic nitrate reductase activity. J. Gen. Microbiol. 139: 3205-3214 (1993).

Bellaloui N, Reddy KN, Zablotowicz RM, Mengistu A. Simulated glyphosate drift influences nitrate assimilation and nitrogen fixation in non-glyphosate-resistant soybean. J. Agric. Food Chem. 54: 3357-3364 (2006).

Bellaloui N, Zablotowicz RM, Reddy KN, Abel CA. Nitrogen metabolism and seed composition as influenced by glyphosate application in glyphosate-resistant soybean. J. Agric. Food Chem. 56: 2765-2772 (2008).

Beller HR, Letain TE, Chakicherla A, Kane SR, Legler TC, Coleman MA. Whole-genome transcriptional analysis of chemolithoautotrophic thiosulfate oxidation by Thiobacillus denitrificans under aerobic versus denitrifying conditions. J. Bacteriol. 188: 7005-7015 (2006).

Bender KS, Shang C, Chakraborty R, Belchik SM, Coates JD, Achenbach LA. Identification, characterization, and classification of genes encoding perchlorate reductase. J. Bacteriol. 187: 5090-5096 (2005).

Bennett B, Charnock JM, Sears HJ, Berks BC, Thomson AJ, Ferguson SJ, Garner CD, Richardson DJ. Structural investigation of the molybdenum site of the periplasmic nitrate reductase from Thiosphaera pantotropha by X-ray absorption spectroscopy. Biochem. J. 317: 557-563 (1996).

Berczi A, Moller IM. Redox enzymes in the plant plasma membrane and their possible roles. Plant Cell Environ. 23: 1287-1302 (2000).

Berg BL, Stewart V. Structural genes for nitrate-inducible formate dehydrogenase in Escherichia coli K-12. Genetics 125: 691-702 (1990).

Berges JA, Varela DE, Harrison PJ. Effects of temperature on growth rate, cell composition and nitrogen metabolism in the marine diatom Thalassiosira pseudonana (Bacillariophyceae). Mar. Ecol. Prog. Ser. 225: 139-146 (2002).

Berks BC, Richardson DJ, Robinson C, Reilly A, Aplin RT, Ferguson SJ. Purification and characterization of the periplasmic nitrate reductase from Thiosphaera pantotropha. Eur. J. Biochem. 220: 117-124 (1994).

Bertamini M, Muthuchelian K, Nedunchezhian N. Effect of grapevine leafroll on the photosynthesis of field grown grapevine plants (Vitis vinifera L. Cv. Lagrein). J. Phytopathol. 152: 145-152 (2004).

Bertamini M, Nedunchezhian N. Decline of photosynthetic pigments, ribulose-1,5-bisphosphate carboxylase and soluble protein contents, nitrate reductase and photosynthetic activities, and… Photosynthetica 39: 529-537 (2001).

Bertero MG, Rothery RA, Boroumand N, Palak M, Blasco F, Ginet N, Weiner JH, Strynadka NC. Structural and biochemical characterization of a quinol binding site of Escherichia coli nitrate reductase A. J. Biol. Chem. 280: 14836-14843 (2005).

Bertero MG, Rothery RA, Palak M, Hou C, Lim D, Blasco F, Weiner JH, Strynadka NCJ. Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Nat. Struct. Biol. 10: 681-687 (2003).

Besson-Bard A, Gravot A, Richaud P, Auroy P, Duc C, Gaymard F, Taconnat L, Renou JP, Pugin A, Wendehenne D. Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol. 149: 1302-1315 (2009).

Bethke PC, Badger MR, Jones RL. Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16: 332-341 (2004).

Bhattacharya J, Singh AK, Rai AN. Isolation and characterization of a chlorate-resistant mutant (Clo- R) of the symbiotic cyanobacterium Nostoc ANTH: heterocyst formation and N(2)-fixation in the presence of nitrate, and evidence for separate nitrate and nitrite transport systems. Curr. Microbiol. 45: 99-104 (2002).

Bijlsma RJ, Lambers H, Kooijman SALM. A dynamic whole-plant model of integrated metabolism of nitrogen and carbon. 1. Comparative ecological implications of ammonium-nitrate interactions. Plant & Soil 220: 49-69 (2000).

Bird C, Wyman M. Nitrate/nitrite assimilation system of the marine picoplanktonic cyanobacterium Synechococcus sp strain WH 8103: Effect of nitrogen source and availability on gene expression. Appl. Environ. Microbiol. 69: 7009-7018 (2003).

Black BL, Fuchigami LH, Coleman GD. Partitioning of nitrate assimilation among leaves, stems and roots of poplar. Tree Physiol. 22: 717-724 (2002).

Blankenship JE, Kindle KL. Expression of chimeric genes by the light-regulated cabII-1 promoter in Chlamydomonas reinhardtii: a cabII-1/nit1 gene functions as a dominant selectable marker in a nit1- nit2- strain. Mol. Cell Biol. 12: 5268-5279 (1992).

Blasco F, Dos Santos JP, Magalon A, Frixon C, Guigliarelli B, Santini CL, Giordano G. NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli. Mol. Microbiol. 28: 435-447 (1998).

Blasco F, Guigliarelli B, Magalon A, Asso M, Giordano G, Rothery RA. The coordination and function of the redox centres of the membrane-bound nitrate reductases. Cell Mol. Life Sci. 58: 179-193 (2001).

Blasco F, Iobbi C, Giordano G, Chippaux M, Bonnefoy V. Nitrate reductase of Escherichia coli: completion of the nucleotide sequence of the nar operon and reassessment of the role of the alpha and beta subunits in iron binding and electron transfer. Mol. Gen. Genet. 218: 249-256 (1989).

Blasco F, Iobbi C, Ratouchniak J, Bonnefoy V, Chippaux M. Nitrate reductases of Escherichia coli: sequence of the second nitrate reductase and comparison with that encoded by the narGHJI operon. Mol. Gen. Genet. 222: 104-111 (1990).

Blasco F, Pommier J, Augier V, Chippaux M, Giordano G. Involvement of the narJ or narW gene product in the formation of active nitrate reductase in Escherichia coli. Mol. Microbiol. 6: 221-230 (1992).

Blasco R, Castillo F, Martinez-Luque M. The assimilatory nitrate reductase from the phototrophic bacterium, Rhodobacter capsulatus E1F1, is a flavoprotein. FEBS Lett. 414: 45-49 (1997).

Blasco R, Martinez-Luque M, Madrid MP, Castillo F, Moreno-Vivian C. Rhodococcus sp. RB1 grows in the presence of high nitrate and nitrite concentrations and assimilates nitrate in moderately saline environments. Arch. Microbiol. 175: 435-440 (2001).

Bloom AJ, Smart DR, Nguyen DT, Searles PS. Nitrogen assimilation and growth of wheat under elevated carbon dioxide. Proc. Natl. Acad. Sci. U.S.A. 99: 1730-1735 (2002).

Boer E, Schroter A, Bode R, Piontek M, Kunze G. Characterization and expression analysis of a gene cluster for nitrate assimilation from the yeast Arxula adeninivorans. Yeast 26: 83-93 (2009).

Boisson M, Mondon K, Torney V, Nicot N, Laine AL, Bahrman N, Gouy A, Daniel-Vedele F, Hirel B, Sourdille P, Dardevet M, Ravel C, Le Gouis J. Partial sequences of nitrogen metabolism genes in hexaploid wheat. Theor. Appl. Genet. 110: 932-940 (2005).

Bonnard N, Tresierra-Ayala A, Bedmar EJ, Delgado MJ. Molybdate-dependent expression of the periplasmic nitrate reductase in Bradyrhizobium japonicum. Biochem. Soc. Trans. 33: 127-129 (2005).

Bonnefoy V, Demoss JA. Nitrate reductases in Escherichia coli. Antonie Van Leeuwenhoek 66: 47-56 (1994).

Bonnefoy V, Ratouchniak J, Blasco F, Chippaux M. Organization of the nar genes at the chlZ locus. FEMS Microbiol. Lett. 147: 147-149 (1997).

Boo YC, Tressel SL, Jo H. An improved method to measure nitrate/nitrite with an NO-selective electrochemical sensor. Nitric Oxide 16: 306-312 (2007).

Booij PP, Roberts MR, Vogelzang SA, Kraayenhof R, De Boer AH. 14-3-3 proteins double the number of outward-rectifying K+ channels available for activation in tomato cells. Plant J. 20: 673-683 (1999).

Borges R, Miguel EC, Dias JMR, da Cunha M, Bressan-Smith RE, de Oliveira JG, de Souza GA. Ultrastructural, physiological and biochemical analyses of chlorate toxicity on rice seedlings. Plant Sci. 166: 1057-1062 (2004).

Botrel A, Kaiser WM. Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status. Planta 201: 496-501 (1997).

Bouchard JN, Yamasaki H. Heat stress stimulates nitric oxide production in Symbiodinium microadriaticum: a possible linkage between nitric oxide and the coral bleaching phenomenon. Plant Cell Physiol. 49: 641-652 (2008).

Boxer DH. Involvement of the chlorate resistance loci and the molybdenum cofactor in the biosynthesis of the Escherichia coli nitrate reductase. In "Molecular and Genetic Aspects of Nitrate Assimilation" (JL Wray, JR Kinghorn eds) Oxford Science Publications, Oxford, pp. 27-39 (1989).

Braker G, Tiedje JM. Nitric oxide reductase (norB) genes from pure cultures and environmental samples. Appl. Environ. Microbiol. 69: 3476-3483 (2003).

Brige A, Leys D, Meyer TE, Cusanovich MA, Van Beeumen JJ. The 1.25 angstrom resolution structure of the diheme NapB subunit of soluble nitrate reductase reveals a novel cytochrome c fold with a stacked heme arrangement. Biochemistry 41: 4827-4836 (2002).

Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on HO synthesis. Plant J. 45: 113-122 (2006).

Brito N, Avila J, Perez MD, Gonzalez C, Siverio JM. The genes YNI1 and YNR1, encoding nitrite reductase and nitrate reductase respectively in the yeast Hansenula polymorpha, are clustered and co-ordinately regulated. Biochem. J. 317: 89-95 (1996).

Brito N, Gonzalez C, Marzluf GA. Hypersensitive sites in the 5' promoter region of nit-3, a highly regulated structural gene of Neurospora crassa. J. Bacteriol. 175: 6755-6759 (1993).

Brondijk THC, Fiegen D, Richardson DJ, Cole JA. Roles of NapF, NapG and NapH, subunits of the Escherichia coli periplasmic nitrate reductase, in ubiquinol oxidation. Mol. Microbiol. 44: 245-255 (2002).

Brondijk THC, Nilavongse A, Filenko N, Richardson DJ, Cole JA. NapGH components of the periplasmic nitrate reductase of Escherichia coli K- 12: location, topology and physiological roles in quinol oxidation and redox balancing. Biochem. J. 379: 47-55 (2004).

Brondino CD, Passeggi MCG, Caldeira J, Almendra MJ, Feio MJ, Moura JJG, Moura I. Incorporation of either molybdenum or tungsten into formate dehydrogenase from Desulfovibrio alaskensis NCIMB 13491; EPR assignment of the proximal iron- sulfur cluster to the pterin cofactor in formate dehydrogenases from sulfate- reducing bacteria. J. Biol. Inorg. Chem. 9: 145-151 (2004).

Brooijmans RJ, de Vos WM, Hugenholtz J. Lactobacillus plantarum WCFS1 electron transport chains. Appl. Environ. Microbiol. 75: 3580-3585 (2009).

Brown PH, Bellaloui N, Wimmer MA, Bassil ES, Ruiz J, Hu H, Pfeffer H, Dannel F, Romheld V. Boron in plant biology. Plant Biol. 4: 205-223 (2002).

Buc J, Santini CL, Blasco F, Giordani R, Cardenas ML, Chippaux M, Cornish-Bowden A, Giordano G. Kinetic studies of a soluble alpha beta complex of nitrate reductase A from Escherichia coli. Use of various alpha beta mutants with altered beta subunits. Eur. J. Biochem. 234: 766-772 (1995).

Buchanan G, Kuper J, Mendel RR, Schwarz G, Palmer T. Characterisation of the mob locus of Rhodobacter sphaeroides WS8: mobA is the only gene required for molybdopterin guanine dinucleotide synthesis. Arch. Microbiol. 176: 62-68 (2001).

Bueno E, Bedmar EJ, Richardson DJ, Delgado MJ. Role of Bradyrhizobium japonicum cytochrome c550 in nitrite and nitrate respiration. FEMS Microbiol. Lett. 279: 188-194 (2008).

Bueno E, Gomez-Hernandez N, Girard L, Bedmar EJ, Delgado MJ. Function of the Rhizobium etli CFN42 nirK gene in nitrite metabolism. Biochem. Soc. Trans. 33: 162-163 (2005).

Bungard RA, Wingler A, Morton JD, Andrews M, Press MC, Scholes JD. Ammonium can stimulate nitrate and nitrite reductase in the absence of nitrate in Clematis vitalba. Plant Cell Environ. 22: 859-866 (1999).

Burgdorf T, Bommer D, Bowien B. Involvement of an unusual mol operon in molybdopterin cofactor biosynthesis in Ralstonia eutropha. J. Mol. Microbiol. Biotechnol. 3: 619-629 (2001).

Burgener M, Suter M, Jones S, Brunold C. Cyst(e)ine is the transport metabolite of assimilated sulfur from bundle-sheath to mesophyll cells in maize leaves. Plant Physiol. 116: 1315-1322 (1998).

Burhenne N, Tischner R. Isolation and characterization of nitrite-reductase-deficient mutants of Chlorella sorokiniana (strain 211-8k). Planta 211: 440-445 (2000).

Bursakov SA, Carneiro C, Almendra MJ, Duarte RO, Caldeira J, Moura I, Moura JJ. Enzymatic properties and effect of ionic strength on periplasmic nitrate reductase (NAP) from Desulfovibrio desulfuricans ATCC 27774. Biochem. Biophys. Res. Commun. 239: 816-822 (1997).

Butler CS, Charnock JM, Bennett B, Sears HJ, Reilly AJ, Ferguson SJ, Garner CD, Lowe DJ, Thomson AJ, Berks BC, Richardson DJ. Models for molybdenum coordination during the catalytic cycle of periplasmic nitrate reductase from Paracoccus denitrificans derived from EPR and EXAFS spectroscopy. Biochemistry 38: 9000-9012 (1999).

Butler CS, Charnock JM, Garner CD, Thomson AJ, Ferguson SJ, Berks BC, Richardson DJ. Thiocyanate binding to the molybdenum centre of the periplasmic nitrate reductase from Paracoccus pantotrophus. Biochem. J. 352: 859-864 (2000).

Butler CS, Fairhurst SA, Ferguson SJ, Thomson AJ, Berks BC, Richardson DJ, Lowe DJ. Mo(V) co-ordination in the periplasmic nitrate reductase from Paracoccus pantotrophus probed by electron nuclear double resonance (ENDOR) spectroscopy. Biochem. J. 363: 817-823 (2002).

Butler CS, Ferguson SJ, Berks BC, Thomson AJ, Cheesman MR, Richardson DJ. Assignment of haem ligands and detection of electronic absorption bands of molybdenum in the di-haem periplasmic nitrate reductase of Paracoccus pantotrophus. FEBS Lett. 500: 71-74 (2001).

Butt JN, Anderson LJ, Rubio LM, Richardson DJ, Flores E, Herrero A. Enzyme-catalysed nitrate reduction-themes and variations as revealed by protein film voltammetry. Bioelectrochemistry 56: 17-18 (2002).

Butt YK, Lum JH, Lo SC. Proteomic identification of plant proteins probed by mammalian nitric oxide synthase antibodies. Planta 216: 762-771 (2003).

Caboche M, Rouze P. Nitrate reductase: a target for molecular and cellular studies in higher plants. Trends Genet. 6: 187-192 (1990).

Callaci JJ, Smarrelli J Jr. Regulation of the inducible nitrate reductase isoform from soybeans. Biochim. Biophys. Acta 1088: 127-130 (1991).

Camacho M, Burgos A, Chamber-Perez MA. Nitrogen fixation in transposon mutants from Bradyrhizobium japonicum USDA 110 impaired in nitrate reductase. J. Plant Physiol. 160: 377-386 (2003).

Camacho-Cristobal JJ, Gonzalez-Fontes A. Boron deficiency causes a drastic decrease in nitrate content and nitrate reductase activity, and increases the content of carbohydrates in leaves from tobacco plants. Planta 209: 528-536 (1999).

Camargo A, Llamas A, Schnell RA, Higuera JJ, Gonzalez-Ballester D, Lefebvre PA, Fernandez E, Galvan A. Nitrate signaling by the regulatory gene NIT2 in Chlamydomonas. Plant Cell 19: 3491-3503 (2007).

Campbell EI, Unkles SE, Macro JA, van den Hondel C, Contreras R, Kinghorn JR. Improved transformation efficiency of Aspergillus niger using the homologous niaD gene for nitrate reductase. Curr. Genet. 16: 53-56 (1989).

Campbell WH. Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 277-303 (1999).

Campbell WH. Structure and function of eukaryotic NAD(P)H:nitrate reductase. Cell Mol. Life Sci. 58: 194-204 (2001).

Campbell WH. Structure and regulation of nitrate reductase in higher plants. In "Molecular and Genetic Aspects of Nitrate Assimilation" (JL Wray, JR Kinghorn eds) Oxford Science Publications, Oxford, pp. 125-154 (1989).

Campbell WH. Nitrate reductase biochemistry comes of age. Plant Physiol. 111: 355-361 (1996).

Campbell WH, Kinghorn KR. Functional domains of assimilatory nitrate reductases and nitrite reductases. Trends Biochem. Sci. 15: 315-319 (1990).

Cannons AC, Barber MJ, Solomonson LP. Expression and characterization of the heme-binding domain of Chlorella nitrate reductase. J. Biol. Chem. 268: 3268-3271 (1993).

Cannons AC, Cannon J. The stability of the Chlorella nitrate reductase mRNA is determined by the secondary structure of the 5'-UTR: implications for posttranscriptional regulation of nitrate reductase. Planta 214: 488-491 (2002).

Cannons AC, Iida N, Solomonson LP. Expression of a cDNA clone encoding the haem-binding domain of Chlorella nitrate reductase. Biochem. J. 278: 203-209 (1991).

Cannons AC, Pendleton LC. Possible role for mRNA stability in the ammonium-controlled regulation of nitrate reductase expression. Biochem. J. 297: 561-565 (1994).

Cannons AC, Shiflett SD. Transcriptional regulation of the nitrate reductase gene in Chlorella vulgaris: identification of regulatory elements controlling expression. Curr. Genet. 40: 128-135 (2001).

Caputo C, Fatta N, Barneix AJ. The export of amino acid in the phloem is altered in wheat plants lacking the short arm of chromosome 7B. J. Exp. Bot. 52: 1761-1768 (2001).

Caravaca F, Alguacil MD, Diaz G, Roldan A. Use of nitrate reductase activity for assessing effectiveness of mycorrhizal symbiosis in Dorycnium pentaphyllum under induced water deficit. Commun. Soil Sci. Plant Anal. 34: 2291-2302 (2003).

Caravaca F, Figueroa D, Barea JM, Azcon-Aguilar C, Roldan A. Effect of mycorrhizal inoculation on nutrient acquisition, gas exchange, and nitrate reductase activity of two Mediterranean-autochthonous shrub species under drought stress. J. Plant Nutr. 27: 57-74 (2004).

Carrano CJ, Chohan BS, Hammes BS, Kail BW, Nemykin VN, Basu P. Donor atom dependent geometric isomers in mononuclear oxo-molybdenum(V) complexes: Implications for coordinated endogenous ligation in molybdoenzymes. Inorg. Chem. 42: 5999-6007 (2003).

Castillo F, Dobao MM, Reyes F, Blasco R, Roldán MD, Gavira M, Caballero FJ, Moreno-Vivián C, Martínez-Luque M. Molecular and regulatory properties of the nitrate reducing systems of Rhodobacter. Curr. Microbiol. 33: 341-346 (1996).

Cava F, Zafra O, Berenguer J. A cytochrome c containing nitrate reductase plays a role in electron transport for denitrification in Thermus thermophilus without involvement of the bc respiratory complex. Mol. Microbiol. 70: 507-518 (2008).

Cavicchioli R, Chiang RC, Kalman LV, Gunsalus RP. Role of the periplasmic domain of the Escherichia coli NarX sensor-transmitter protein in nitrate-dependent signal transduction and gene regulation. Mol. Microbiol. 21: 901-911 (1996).

Cedergreen N, Madsen TV. Nitrate reductase activity in roots and shoots of aquatic macrophytes. Aquat. Bot. 76: 203-212 (2003).

Cedergreen N, Madsen TV. Light regulation of root and leaf NO3- uptake and reduction in the floating macrophyte Lemna minor. New Phytol. 161: 449-457 (2004).

Cerezo M, Flors V V, Legaz F, Garcia-Agustin P. Characterization of the low affinity transport system for NO(3)(-) uptake by Citrus roots. Plant Sci. 160: 95-104 (2000).

Cerqueira NM, Gonzalez PJ, Brondino CD, Romao MJ, Romao CC, Moura I, Moura JJ. The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase. J. Comput. Chem. 30: 2466-2484 (2009).

Chaffei C, Gouia H, Masclaux C, Ghorbel MH. Reversibility effects of cadmium in growth and nitrogen metabolism in tomato plants (Lycopersicon esculentum). C. R. Biol. 326: 401-412 (2003).

Chaffei C, Pageau K, Suzuki A, Gouia H, Ghorbel MH, Masclaux-Daubresse C. Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol. 45: 1681-1693 (2004).

Chan CS, Howell JM, Workentine ML, Turner RJ. Twin-arginine translocase may have a role in the chaperone function of NarJ from Escherichia coli. Biochem. Biophys. Res. Commun. 343: 244-151 (2006).

Chanda SV. Factors affecting nitrate reductase activity in some monocot and dicot species. J. Plant Biol. 46: 41-45 (2003).

Chandok MR, Sopory SK. Phosphorylation/dephosphorylation steps are key events in the phytochrome-mediated enhancement of nitrate reductase mRNA levels and enzyme activity in maize. Mol. Gen. Genet. 251: 599-608 (1996).

Chandok MR, Sopory SK. 5-Hydroxytryptamine affects turnover of polyphosphoinositides in maize and stimulates nitrate reductase in the absence of light. FEBS Lett. 356: 39-42 (1994).

Chandok MR, Sopory SK. ZmcPKC70, a protein kinase C-type enzyme from maize. Biochemical characterization, regulation by phorbol 12-myristate 13-acetate and its possible involvement in nitrate reductase gene expression. J. Biol. Chem. 273: 19235-19242 (1998).

Chandok MR, Ytterberg AJ, van Wijk KJ, Klessig DF. The pathogen-inducible nitric oxide synthase (iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex. Cell 113: 469-482 (2003).

Chandrasekar V, Sairam RK, Srivastava GC. Physiological and biochemical responses of hexaploid and tetraploid wheat to drought stress. J. Agron. Crop Sci. 185: 219-227 (2000).

Chang PK, Ehrlich KC, Linz JE, Bhatnagar D, Cleveland TE, Bennett JW. Characterization of the Aspergillus parasiticus niaD and niiA gene cluster. Curr. Genet. 30: 68-75 (1996).

Chen DH, Ye GY, Yang CQ, Chen Y, Wu YK. Effect after introducing Bacillus thuringiensis gene on nitrogen metabolism in cotton. Field Crop. Res. 87: 235-244 (2004).

Chen GX, Fu XP, Lips SH, Sagi M. Control of plant growth resides in the shoot, and not in the root, in reciprocal grafts of flacca and wild-type tomato (Lysopersicon esculentum), in the presence and absence of salinity stress. Plant Soil 256: 205-215 (2003).

Cheneby D, Hallet S, Mondon A, Martin-Laurent F, Germon JC, Philippot L. Genetic characterization of the nitrate reducing community based on narG nucleotide sequence analysis. Microb. Ecol. 46: 113-121 (2003).

Cheng CL, Acedo GN, Cristinsin M, Conkling MA. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc. Natl. Acad. Sci. U.S.A. 89: 1861-1864 (1992).

Chevalet L, Tiraby G, Cabane B, Loison G. Transformation of Aspergillus flavus: construction of urate oxidase-deficient mutants by gene disruption. Curr. Genet. 21: 447-453 (1992).

Chiang RC, Cavicchioli R, Gunsalus RP. 'Locked-on' and 'locked-off' signal transduction mutations in the periplasmic domain of the Escherichia coli NarQ and NarX sensors affect nitrate- and nitrite-dependent regulation by NarL and NarP. Mol. Microbiol. 24: 1049-1060 (1997).

Chiang RC, Cavicchioli R, Gunsalus RP. Identification and characterization of narQ, a second nitrate sensor for nitrate-dependent gene regulation in Escherichia coli. Mol. Microbiol. 6: 1913-1923 (1992).

Chiang TY, Marzluf GA. Binding affinity and functional significance of NIT2 and NIT4 binding sites in the promoter of the highly regulated nit-3 gene, which encodes nitrate reductase in Neurospora crassa. J. Bacteriol. 177: 6093-6099 (1995).

Chiu CC, Lin CS, Hsia AP, Su RC, Lin HL, Tsay YF. Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development. Plant Cell Physiol. 45: 1139-1148 (2004).

Cho JC, Tiedje JM. Quantitative detection of microbial genes by using DNA microarrays. Appl. Environ. Microbiol. 68: 1425-1430 (2002).

Choo YS, Lee CB, Albert R. Effects of nitrogen nutrition on the pattern of ions and organic solutes in five sedges (Carex spp.). Flora 197: 56-66 (2002).

Chow F, de Oliveira MC, Pedersen M. In vitro assay and light regulation of nitrate reductase in red alga Gracilaria chilensis. J. Plant Physiol. 161: 769-776 (2004).

Christensen MK, Falkeid G, Loros JJ, Dunlap JC, Lillo C, Ruoff P. A nitrate-induced frq-less oscillator in Neurospora crassa. J. Biol. Rhythms 19: 280-286 (2004).

Chung H-J, Sehnke PC, Ferl RJ. The 14-3-3 proteins: cellular regulators of plant metabolism. Trends Plant Sci. 4: 367-371 (1999).

Cinege G, Kereszt A, Kertesz S, Balogh G, Dusha I. The roles of different regions of the CycH protein in c-type cytochrome biogenesis in Sinorhizobium meliloti. Mol. Genet. Genomics 271: 171-179 (2004).

Clark DP. Chromate reductase activity of Enterobacter aerogenes is induced by nitrite. FEMS Microbiol. Lett. 122: 233-237 (1994).

Clark MB, Mills HA, Robacker CD, Latimer JG. Influence of nitrate: ammonium ratios on growth and elemental concentration in two azalea cultivars. J. Plant Nutr. 26: 2503-2520 (2003).

Clegg S, Yu F, Griffiths L, Cole JA. The roles of the polytopic membrane proteins NarK, NarU and NirC in Escherichia coli K-12: two nitrate and three nitrite transporters. Mol. Microbiol. 44: 143-155 (2002).

Clegg SJ, Jia W, Cole JA. Role of the Escherichia coli nitrate transport protein, NarU, in survival during severe nutrient starvation and slow growth. Microbiology 152: 2091-2100 (2006).

Cliquet JB, Stewart GR. Ammonia assimilation in Zea mays L. infected with a vesicular-arbuscular mycorrhizal fungus Glomus fasciculatum. Plant Physiol. 101: 865-871 (1993).

Coddington A. Biochemical studies on the nit mutants of Neurospora crassa. Mol. Gen. Genet. 145: 195-206 (1976).

Cole J. Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation? FEMS Microbiol. Lett. 136: 1-11 (1996).

Collins LA, Egan SM, Stewart V. Mutational analysis reveals functional similarity between NARX, a nitrate sensor in Escherichia coli K-12, and the methyl-accepting chemotaxis proteins. J. Bacteriol. 174: 3667-3675 (1992).

Comparot S, Lingiah G, Martin T. Function and specificity of 14-3-3 proteins in the regulation of carbohydrate and nitrogen metabolism. J. Exp. Bot. 54: 595-604 (2003).

Cookson SJ, Williams LE, Miller AJ. Light-dark changes in cytosolic nitrate pools depend on nitrate reductase activity in Arabidopsis leaf cells. Plant Physiol. 138: 1097-1105 (2005).

Corpas FJ, Chaki M, Fernandez-Ocana A, Valderrama R, Palma JM, Carreras A, Begara-Morales JC, Airaki M, Rio LA, Barroso JB. Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol. 49: 1711-1722 (2008).

Correia C, Besson S, Brondino CD, Gonzalez PJ, Fauque G, Lampreia J, Moura I, Moura JJ. Biochemical and spectroscopic characterization of the membrane-bound nitrate reductase from Marinobacter hydrocarbonoclasticus 617. J. Biol. Inorg. Chem. 13: 1321-1333 (2008).

Correia MJ, Fonseca F, Azedo-Silva J, Dias C, David MM, Barrote I, Osorio ML, Osorio J. Effects of water deficit on the activity of nitrate reductase and content of sugars, nitrate and free amino acids in the leaves and roots of sunflower and white lupin plants growing under two nutrient supply regimes. Physiol. Plant. 124: 61-70 (2005).

Cosseau C, Garnerone AM, Batut J. The FixM flavoprotein modulates inhibition by AICAR or 5'AMP of respiratory and nitrogen fixation gene expression in Sinorhizobium meliloti. Mol. Plant Microbe Interact. 15: 598-607 (2002).

Cotelle V, Meek SE, Provan F, Milne FC, Morrice N, MacKintosh C. 14-3-3s regulate global cleavage of their diverse binding partners in sugar-starved Arabidopsis cells. EMBO J. 19: 2869-2876 (2000).

Cozen AE, Weirauch MT, Pollard KS, Bernick DL, Stuart JM, Lowe TM. Transcriptional map of respiratory versatility in the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. J. Bacteriol. 191: 782-794 (2009).

Crack JC, Le Brun NE, Thomson AJ, Green J, Jervis AJ. Reactions of nitric oxide and oxygen with the regulator of fumarate and nitrate reduction, a global transcriptional regulator, during anaerobic growth of Escherichia coli. Methods Enzymol. 437: 191-209 (2008).

Cramm R. Genomic view of energy metabolism in Ralstonia eutropha H16. J. Mol. Microbiol. Biotechnol. 16: 38-52 (2009).

Crawford NM, Davis RW. Molecular analysis of nitrate regulation of nitrate reductase in squash and Arabidopsis. In "Molecular and Genetic Aspects of Nitrate Assimilation" (JL Wray, JR Kinghorn eds) Oxford Science Publications, Oxford, pp. 328-337 (1989).

Creevey NL, McEwan AG, Hanson GR, Bernhardt PV. Thermodynamic characterization of the redox centers within dimethylsulfide dehydrogenase. Biochemistry 47: 3770-3776 (2008).

Cruz JL, Mosquim PR, Pelacani CR, Araujo WL, DaMatta FM. Effects of nitrate nutrition on nitrogen metabolism in cassava. Biol. Plant. 48: 67-72 (2004).

Cruz Ramos H, Hoffmann T, Marino M, Nedjari H, Presecan-Siedel E, Dreesen O, Glaser P, Jahn D. Fermentative metabolism of Bacillus subtilis: physiology and regulation of gene expression. J. Bacteriol. 182: 3072-3080 (2000).

Cruz-Garcia C, Murray AE, Klappenbach JA, Stewart V, Tiedje JM. Respiratory nitrate ammonification by Shewanella oneidensis MR-1. J. Bacteriol. 189: 656-662 (2007).

Cui Y, Barford JP, Renneberg R. Development of a bienzyme system for the electrochemical determination of nitrate in ambient air. Anal. Bioanal. Chem. 386: 1567-1570 (2006).

Curtis IS, Power JB, de Laat AMM, Caboche M, Davey MR. Expression of a chimeric nitrate reductase gene in transgenic lettuce reduces nitrate in leaves. Plant Cell Rep. 18: 889-896 (1999).

Cutler SB, Caten CE. Characterisation of the nitrite reductase gene (NII1) and the nitrate-assimilation gene cluster of Stagonospora (Septoria) nodorum. Curr. Genet. 36: 282-289 (1999).

Daboussi MJ, Daviere JM, Graziani S, Langin T. Evolution of the fot1 transposons in the genus Fusarium: discontinuous distribution and epigenetic inactivation. Mol. Biol. Evol. 19: 510-520 (2002).

Daniel-Vedele F, Caboche M. A tobacco cDNA clone encoding a GATA-1 zinc finger protein homologous to regulators of nitrogen metabolism in fungi. Mol. Gen. Genet. 240: 365-373 (1993).

Daniel-Vedele F, Dorbe MF, Caboche M, Rouze P. Cloning and analysis of the tomato nitrate reductase-encoding gene: protein domain structure and amino acid homologies in higher plants. Gene 85: 371-380 (1989).

Danielsson H, Stenklo TK, Karlsson J, Nilsson T. A gene cluster for chlorate metabolism in Ideonella dechloratans. Appl. Environ. Microbiol. 69: 5585-5592 (2003).

Darwin AJ, Ziegelhoffer EC, Kiley PJ, Stewart V. Fnr, NarP, and NarL regulation of Escherichia coli K-12 napF (periplasmic nitrate reductase) operon transcription in vitro. J. Bacteriol. 180: 4192-4198 (1998).

Daviere JM, Langin T, Daboussi MJ. Potential role of transposable elements in the rapid reorganization of the Fusarium oxysporum genome. Fungal Genet. Biol. 34: 177-192 (2001).

Davis CA, Dhawan IK, Johnson MK, Barber MJ. Heterologous expression of an endogenous rat cytochrome b(5)/cytochrome b(5) reductase fusion protein: Identification of histidines 62 and 85 as the heme axial ligands. Arch. Biochem. Biophys. 400: 63-75 (2002).

Davis MA, Hynes MJ. Complementation of areA- regulatory gene mutations of Aspergillus nidulans by the heterologous regulatory gene nit-2 of Neurospora crassa. Proc. Natl. Acad. Sci. U.S.A. 84: 3753-3757 (1987).

Dawson HN, Burlingame R, Cannons AC. Stable transformation of Chlorella: rescue of nitrate reductase-deficient mutants with the nitrate reductase gene. Curr. Microbiol. 35: 356-362 (1997).

Dawson HN, Pendleton LC, Solomonson LP, Cannons AC. Cloning and characterization of the nitrate reductase-encoding gene from Chlorella vulgaris: structure and identification of transcription start points and initiator sequences. Gene 171: 139-145 (1996).

de Jong GAH, Tang JA, Bos P, de Vries S, Kuenen JG. Purification and characterization of a sulfite:cytochrome c oxidoreductase from Thiobacillus acidophilus. J. Mol. Catal. B. Enzym. 8: 61-67 (2000).

de la Haba P, Aguera E, Benitez L, Maldonado JM. Modulation of nitrate reductase activity in cucumber (Cucumis sativus) roots. Plant Sci. 161: 231-237 (2001).

De la Rosa MA. Assimilatory nitrate reductase from the green alga Ankistrodesmus braunii. Mol. Cell Biochem. 50: 65-74 (1983).

de la Rosa MA, Diez J, Vega JM, Losada M. Purification and properties of assimilatory nitrate reductase [NAD(P)H] from Ankistrodesmus braunii. Eur. J. Biochem. 106: 249-256 (1980).

de Queiroz MV, Barros AO, de Barros EG, Guimaraes V, de Araujo EF. Transformation of Penicillium griseoroseum nitrate reductase mutant with the nia gene from Fusarium oxysporum. Can. J. Microbiol. 44: 487-489 (1998).

de Queiroz MV, Daboussi MJ. Impala, a transposon from Fusarium oxysporum, is active in the genome of Penicillium griseoroseum. FEMS Microbiol. Lett. 218: 317-321 (2003).

De S, Perkins M, Dutta SK. Nitrate reductase gene involvement in hexachlorobiphenyl dechlorination by Phanerochaete chrysosporium. J. Hazard. Mater. 135: 350-354 (2006).

Dean JV, Harper JE. The conversion of nitrite to nitrogen oxide(s) by the constitutive NAD(P)H-nitrate reductase enzyme from soybean. Plant Physiol. 88: 389-395 (1988).

Debouba M, Gouia H, Suzuki A, Ghorbel MH. NaCl stress effects on enzymes involved in nitrogen assimilation pathway in tomato "Lycopersicon esculentum" seedlings. J. Plant Physiol. 163: 1247-1258 (2006).

Debouba M, Gouia H, Valadier MH, Ghorbel MH, Suzuki A. Salinity-induced tissue-specific diurnal changes in nitrogen assimilatory enzymes in tomato seedlings grown under high or low nitrate medium. Plant Physiol. Biochem. 44: 409-419 (2006).

Debouba M, Maaroufi-Dghimi H, Suzuki A, Ghorbel MH, Gouia H. Changes in growth and activity of enzymes involved in nitrate reduction and ammonium assimilation in tomato seedlings in response to NaCl stress. Ann. Bot. (Lond.) 99: 1143-1151 (2007).

Deiglmayr K, Philippot L, Tscherko D, Kandeler E. Microbial succession of nitrate-reducing bacteria in the rhizosphere of Poa alpina across a glacier foreland in the Central Alps. Environ. Microbiol. 8: 1600-1612 (2006).

del Rio LA, Corpas FJ, Barroso JB. Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65: 783-792 (2004).

Delgado MJ, Bonnard N, Tresierra-Ayala A, Bedmar EJ, Muller P. The Bradyrhizobium japonicum napEDABC genes encoding the periplasmic nitrate reductase are essential for nitrate respiration. Microbiology (U.K.) 149: 3395-3403 (2003).

Delgado MJ, Tresierra-Ayala A, Talbi C, Bedmar EJ. Functional characterization of the Bradyrhizobium japonicum modA and modB genes involved in molybdenum transport. Microbiology 152: 199-207 (2006).

Delorme S, Philippot L, Edel-Hermann V, Deulvot C, Mougel C, Lemanceau P. Comparative genetic diversity of the narG, nosZ, and 16S rRNA genes in fluorescent pseudomonads. Appl. Environ. Microbiol. 69: 1004-1012 (2003).

DeMoss JA, Hsu PY. NarK enhances nitrate uptake and nitrite excretion in Escherichia coli. J. Bacteriol. 173: 3303-3310 (1991).

Deng JM, Bin JH, Pan RC. Effects of light quality on the primary nitrogen assimination of rice (Oryza sativa L.) seedlings. Acta Bot. Sin. 42: 234-238 (2000).

Desai S, Pollock V, Barber MJ. Construction and expression of a synthetic gene for nitrate reductase. FASEB J. 16: A921 (2002).

Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ. ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J. Exp. Bot. 55: 205-212 (2004).

Desikan R, Griffiths R, Hancock J, Neill S. A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 99: 16314-16318 (2002).

Detkova EN, Boltianskaia IuV. Relationships between the osmoadaptation strategy, amino acid composition of total cellular protein, and properties of certain enzymes of haloalkaliphilic bacteria. Mikrobiologiia 75: 312-319 (2006).

Dhage AR, Desai BB, Naik RM, Munjal SV, Naik MS. Modification of the redox state of cytochrome c oxidase of rice due to certain stress treatments. Indian J. Biochem. Biophys. 29: 425-427 (1992).

di Rigano VM, Vona V, Lobosco O, Carillo P, Lunn JE, Carfagna S, Esposito S, Caiazzo M, Rigano C. Temperature dependence of nitrate reductase in the psychrophilic unicellular alga Koliella antarctica and the mesophilic alga Chlorella sorokiniana. Plant Cell Environ. 29: 1400-1409 (2006).

Dias JM, Bursakov S, Carneiro C, Moura JJ, Moura I, Romao MJ. Crystallization and preliminary X-ray analysis of a nitrate reductase from Desulfovibrio desulfuricans ATCC 27774. Acta Crystallogr. D. Biol. Crystallogr. 55: 877-879 (1999).

Dias JM, Than ME, Humm A, Huber R, Bourenkov GP, Bartunik HD, Bursakov S, Calvete J, Caldeira J, Carneiro C, Moura JJ, Moura I, Romao MJ. Crystal structure of the first dissimilatory nitrate reductase at 1.9 A solved by MAD methods. Structure 7: 65-79 (1999).

DiChristina TJ. Effects of nitrate and nitrite on dissimilatory iron reduction by Shewanella putrefaciens 200. J. Bacteriol. 174: 1891-1896 (1992).

Diekmann S, Weston J, Anders E, Boland W, Schonecker B, Hettmann T, von Langen J, Erhardt S, Mauksch M, Brauer M, Beckmann C, Rost M, Sperling P, Heinz E. Metal-mediated reactions modeled after nature. J. Biotechnol. 90: 73-94 (2002).

Dinakar N, Nagajyothi PC, Suresh S, Udaykiran Y, Damodharam T. Phytotoxicity of cadmium on protein, proline and antioxidant enzyme activities in growing Arachis hypogaea L. seedlings. J. Environ. Sci. (China) 20: 199-206 (2008).

Diolez A, Langin T, Gerlinger C, Brygoo Y, Daboussi MJ. The nia gene of Fusarium oxysporum: isolation, sequence and development of a homologous transformation system. Gene 131: 61-67 (1993).

Djennane S, Chauvin JE, Meyer C. Glasshouse behaviour of eight transgenic potato clones with a modified nitrate reductase expression under two fertilization regimes. J. Exp. Bot. 53: 1037-1045 (2002).

Djennane S, Chauvin JE, Quillere I, Meyer C, Chupeau Y. Introduction and expression of a deregulated tobacco nitrate reductase gene in potato lead to highly reduced nitrate levels in transgenic tubers. Transgenic Res. 11: 175-184 (2002).

Djennane S, Quillere I I, Leydecker MT, Meyer C, Chauvin JE. Expression of a deregulated tobacco nitrate reductase gene in potato increases biomass production and decreases nitrate concentration in all organs. Planta 219: 884-893 (2004).

Dluzniewska P, Gessler A, Kopriva S, Strnad M, Novak O, Dietrich H, Rennenberg H. Exogenous supply of glutamine and active cytokinin to the roots reduces NO3- uptake rates in poplar. Plant Cell Environ. 29: 1284-1297 (2006).

Dobbek H, Huber R. The molybdenum and tungsten cofactors: A crystallographic view. Met. Ions Biol. Syst. 39: 227-263 (2002).

Dominguez MJ, Gutierrez F, Leon R, Vilchez C, Vega JM, Vigara J. Cadmium increases the activity levels of glutamate dehydrogenase and cysteine synthase in Chlamydomonas reinhardtii. Plant Physiol. Biochem. 41: 828-832 (2003).

Dong B, Sang WL, Jiang X, Zhou JM, Kong FX, Hu W, Wang LS. Effects of aluminum on physiological metabolism and antioxidant system of wheat (Triticum aestivum L.). Chemosphere 47: 87-92 (2002).

Dong CX, Shen QR, Wang G. Tomato growth and organic acid changes in response to partial replacement of NO3--N by NH4+-N. Pedosphere 14: 159-164 (2004).

Dong L, Ermolova NV, Chollet R. Partial purification and biochemical characterization of a heteromeric protein phosphatase 2A holoenzyme from maize (Zea mays L.) leaves that dephosphorylates C4 phosophoenolpyruvate carboxylase. Planta 213: 379-389 (2001).

Dorbe MF, Caboche M, Daniel-Vedele F. The tomato nia gene complements a Nicotiana plumbaginifolia nitrate reductase-deficient mutant and is properly regulated. Plant Mol. Biol. 18: 363-375 (1992).

Dordas C, Hasinoff BB, Rivoal J, Hill RD. Class-1 hemoglobins, nitrate and NO levels in anoxic maize cell-suspension cultures. Planta 219: 66-72 (2004).

Dorlhac de Borne F, Vincentz M, Chupeau Y, Vaucheret H. Co-suppression of nitrate reductase host genes and transgenes in transgenic tobacco plants. Mol. Gen. Genet. 243: 613-621 (1994).

Douglas P, Moorhead G, Hong Y, Morrice N, MacKintosh C. Purification of a nitrate reductase kinase from Spinacea oleracea leaves, and its identification as a calmodulin-domain protein kinase. Planta 206: 435-442 (1998).

Douglas P, Morrice N, MacKintosh C. Identification of a regulatory phosphorylation site in the hinge 1 region of nitrate reductase from spinach (Spinacea oleracea) leaves. FEBS Lett. 377: 113-117 (1995).

Douglas P, Pigaglio E, Ferrer A, Halfords NG, MacKintosh C. Three spinach leaf nitrate reductase-3-hydroxy-3-methylglutaryl-CoA reductase kinases that are required by reversible phosphorylation and/or Ca2+ ions. Biochem. J. 325: 101-109 (1997).

Downey R, Wiehl P. De novo formation of the niaD gene directed protomer in the NADPH-nitrate reductase of Aspergillus nidulans. Biochem. Biophys. Res. Commun. 108: 1517-1523 (1982).

Downey R, Wiehl P. A convener role for the cnxH gene specified component in the NADPH-nitrate reductase from Aspergillus nidulans. Mol. Cell Biochem. 59: 155-163 (1984).

Downey RJ, Cook JA, Brumfield AM. Monoclonal antibody probes for the niaD specified subunit in the NADPH-nitrate reductase from Aspergillus nidulans. Microbios. 52: 137-150 (1987).

Dridge EJ, Richardson DJ, Lewis RJ, Butler CS. Developing structure-based models to predict substrate specificity of D-group (type II) molybdenum enzymes: application to a molybdo-enzyme of unknown function from Archaeoglobus fulgidus. Biochem. Soc. Trans. 34: 118-121 (2006).

Druart N, Goupil P, Dewaele E, Boutin JP, Rambour S. Nitrate assimilation in chicory roots (Cichorium intybus L.) which acquire radial growth. J. Exp. Bot. 51: 539-546 (2000).

Du S, Zhang Y, Lin X, Wang Y, Tang C. Regulation of nitrate reductase by nitric oxide in Chinese cabbage pakchoi (Brassica chinensis L.). Plant Cell Environ. 31: 195-204 (2008).

Dubois F, Terce-Laforgue T, Gonzalez-Moro MB, Estavillo JM, Sangwan R, Gallais A, Hirel B. Glutamate dehydrogenase in plants: is there a new story for an old enzyme? Plant Physiol. Biochem. 41: 565-576 (2003).

Dubois V, Botton E, Meyer C, Rieu A, Bedu M, Maisonneuve B, Mazier M. Systematic silencing of a tobacco nitrate reductase transgene in lettuce (Lactuca sativa L.). J. Exp. Bot. 56: 2379-2388 (2005).

Dubourdieu M, DeMoss JA. The narJ gene product is required for biogenesis of respiratory nitrate reductase in Escherichia coli. J. Bacteriol. 174: 867-872 (1992).

Ducluzeau AL, van Lis R, Duval S, Schoepp-Cothenet B, Russell MJ, Nitschke W. Was nitric oxide the first deep electron sink? Trends Biochem. Sci. 34: 9-15 (2009).

Duncanson E, Gilkes AF, Kirk DW, Sherman A, Wray JL. nir1, a conditional-lethal mutation in barley causing a defect in nitrite reduction. Mol. Gen. Genet. 236: 275-282 (1993).

Dunn-Coleman NS, Garrett RH. The role of glutamine synthetase and glutamine metabolism in nitrogen metabolite repression, a regulatory phenomenon in the lower eukaryote Neurospora crassa. Mol. Gen. Genet. 179: 25-32 (1980).

Dunn-Coleman NS, Garrett RH. Effect of the gln-1b mutation on nitrogen metabolite repression in Neurospora crassa. J. Bacteriol. 145: 884-888 (1981).

Dunn-Coleman NS, Tomsett AB, Garrett RH. Nitrogen metabolite repression of nitrate reductase in Neurospora crassa: effect of the gln-1a locus. J. Bacteriol. 139: 697-700 (1979).

Durand N, Briand X, Meyer C. The effect of marine bioactive substances (N PRO) and exogenous cytokinins on nitrate reductase activity in Arabidopsis thaliana. Physiol. Plant. 119: 489-493 (2003).

Dwivedi UN, Shiraishi N, Campbell WH. Identification of an "essential" cysteine of nitrate reductase via mutagenesis of its recombinant cytochrome b reductase domain. J. Biol. Chem. 269: 13785-13791 (1994).

Dzuibany C, Haupt S, Fock H, Biehler K, Migge A, Becker TW. Regulation of nitrate reductase transcript levels by glutamine accumulating in the leaves of a ferredoxin-dependent glutamate synthase-deficient gluS mutant of Arabidopsis thaliana, and by glutamine provided via the roots. Planta 206: 515-522 (1998).

Eaves DJ, Palmer T, Boxer DH. The product of the molybdenum cofactor gene mobB of Escherichia coli is a GTP-binding protein. Eur. J. Biochem. 246: 690-697 (1997).

Eberl L, Ammendola A, Rothballer MH, Givskov M, Sternberg C, Kilstrup M, Schleifer KH, Molin S. Inactivation of gltB abolishes expression of the assimilatory nitrate reductase gene (nasB) in Pseudomonas putida KT2442. J. Bacteriol. 182: 3368-3376 (2000).

Eckardt NA. Moco mojo: crystal structure reveals essential features of eukaryotic assimilatory nitrate reduction. Plant Cell 17: 1029-1031 (2005).

Egan SM, Stewart V. Nitrate regulation of anaerobic respiratory gene expression in narX deletion mutants of Escherichia coli K-12. J. Bacteriol. 172: 5020-5029 (1990).

Eller AS, Sparks JP. Predicting leaf-level fluxes of O3 and NO2: the relative roles of diffusion and biochemical processes. Plant Cell Environ. 29: 1742-1750 (2006).

Ellington MJ, Bhakoo KK, Sawers G, Richardson DJ, Ferguson SJ. Hierarchy of carbon source selection in Paracoccus pantotrophus: strict correlation between reduction state of the carbon substrate and aerobic expression of the Nap operon. J. Bacteriol. 184: 4767-4774 (2002).

Ellington MJ, Richardson DJ, Ferguson SJ. Rhodobacter capsulatus gains a competitive advantage from respiratory nitrate reduction during light-dark transitions. Microbiology 149: 941-948 (2003).

Ellington MJ, Sawers G, Sears HJ, Spiro S, Richardson DJ, Ferguson SJ. Characterization of the expression and activity of the periplasmic nitrate reductase of Paracoccus pantotrophus in chemostat cultures. Microbiology 149: 1533-1540 (2003).

Elliott SJ, Hoke KR, Heffron K, Palak M, Rothery RA, Weiner JH, Armstrong FA. Voltammetric studies of the catalytic mechanism of the respiratory nitrate reductase from Escherichia coli: How nitrate reduction and inhibition depend on the oxidation state of the active site. Biochemistry 43: 799-807 (2004).

Eschbach M, Mobitz H, Rompf A, Jahn D. Members of the genus Arthrobacter grow anaerobically using nitrate ammonification and fermentative processes: anaerobic adaptation of aerobic bacteria abundant in soil. FEMS Microbiol. Lett. 223: 227-230 (2003).

Espen L, Nocito FF, Cocucci M. Effect of NO3- transport and reduction on intracellular pH: an in vivo NMR study in maize roots. J. Exp. Bot. 55: 2053-2061 (2004).

Estevez MS, Puntarulo S. Nitric oxide generation upon growth of Antarctic Chlorella sp cells. Physiol. Plant. 125: 192-201 (2005).

Exley GE, Colandene JD, Garrett RH. Molecular cloning, characterization, and nucleotide sequence of nit-6, the structural gene for nitrite reductase in Neurospora crassa. J. Bacteriol. 175: 2379-2392 (1993).

Falciani F, Terao M, Goldwurm S, Ronchi A, Gatti A, Minoia C, Li Calzi M, Salmona M, Cazzaniga G, Garattini E. Molybdenum(VI) salts convert the xanthine oxidoreductase apoprotein into the active enzyme in mouse L929 fibroblastic cells. Biochem. J. 298: 69-77 (1994).

Fan X, Gordon-Weeks R, Shen Q, Miller AJ. Glutamine transport and feedback regulation of nitrate reductase activity in barley roots leads to changes in cytosolic nitrate pools. J. Exp. Bot. 57: 1333-1340 (2006).

Fan X, Jia L, Li Y, Smith SJ, Miller AJ, Shen Q. Comparing nitrate storage and remobilization in two rice cultivars that differ in their nitrogen use efficiency. J. Exp. Bot. 58: 1729-1740 (2007).

Fan XH, Tang C, Rengel Z. Nitrate uptake, nitrate reductase distribution and their relation to proton release in five nodulated grain legumes. Ann. Bot. (Lond.) 90: 315-323 (2002).

Fariduddin Q, Hayat S, Ahmad A. Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica 41: 281-284 (2003).

Fast B, Lindgren P, Gotz F. Cloning, sequencing, and characterization of a gene (narT) encoding a transport protein involved in dissimilatory nitrate reduction in Staphylococcus carnosus. Arch. Microbiol. 166: 361-367 (1996).

Faure JD, Jullien M, Caboche M. Zea3: a pleiotropic mutation affecting cotyledon development, cytokinin resistance and carbon-nitrogen metabolism. Plant J. 5: 481-491 (1994).

Fedtke I, Kamps A, Krismer B, Gotz F. The nitrate reductase and nitrite reductase operons and the narT gene of Staphylococcus carnosus are positively controlled by the novel two-component system NreBC. J. Bacteriol. 184: 6624-6634 (2002).

Feelisch M, Fernandez BO, Bryan NS, Garcia-Saura MF, Bauer S, Whitlock DR, Ford PC, Janero DR, Rodriguez J, Ashrafian H. Tissue processing of nitrite in hypoxia: an intricate interplay of nitric oxide-generating and -scavenging systems. J. Biol. Chem. 283: 33927-33934 (2008).

Feinberg LF, Srikanth R, Vachet RW, Holden JF. Constraints on anaerobic respiration in the hyperthermophilic Archaea Pyrobaculum islandicum and Pyrobaculum aerophilum. Appl. Environ. Microbiol. 74: 396-402 (2008).

Feng B, Marzluf GA. The regulatory protein NIT4 that mediates nitrate induction in Neurospora crassa contains a complex tripartite activation domain with a novel leucine-rich, acidic motif. Curr. Genet. 29: 537-548 (1996).

Feng B, Marzluf GA. Interaction between major nitrogen regulatory protein NIT2 and pathway-specific regulatory factor NIT4 is required for their synergistic activation of gene expression in Neurospora crassa. Mol. Cell Biol. 18: 3983-3990 (1998).

Feng B, Xiao X, Marzluf GA. Recognition of specific nucleotide bases and cooperative DNA binding by the trans-acting nitrogen regulatory protein NIT2 of Neurospora crassa. Nucleic Acids Res. 21: 3989-3996 (1993).

Feng K, Yan F, Hutsch BW, Schubert S. Nitrous oxide emission as affected by liming an acidic mineral soil used for arable agriculture. Nutr. Cycl. Agroecosyst. 67: 283-292 (2003).

Ferguson SJ. Denitrification and its control. Antonie Van Leeuwenhoek 66: 89-110 (1994).

Ferguson SJ. Nitrogen cycle enzymology. Curr. Opin. Chemical Biol. 2: 182-193 (1998).

Ferl RJ. 14-3-3 proteins: regulation of signal-induced events. Physiol. Plant. 120: 173-178 (2004).

Fernandez E, Cardenas J. In vitro complementation of assimilatory NAD(P)H-nitrate reductase from mutants of Chlamydomonas reinhardii. Biochim. Biophys. Acta 657: 1-12 (1981).

Fernandez E, Schnell R, Ranum LP, Hussey SC, Silflow CD, Lefebvre PA. Isolation and characterization of the nitrate reductase structural gene of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. U.S.A. 86: 6449-6453 (1989).

Fernandez-Lopez M, Olivares J, Bedmar EJ. Purification and characterization of the membrane-bound nitrate reductase isoenzymes of Bradyrhizobium japonicum. FEBS Lett. 392: 1-5 (1996).

Ferrario-Mery S, Hodges M, Hirel B, Foyer CH. Photorespiration-dependent increases in phosphoenolpyruvate carboxylase, isocitrate dehydrogenase and glutamate dehydrogenase in transformed tobacco plants deficient in ferredoxin-dependent glutamine-alpha-ketoglutarate aminotransferase. Planta 214: 877-886 (2002).

Ferrario-Mery S, Masclaux C, Suzuki A, Valadier MH, Hirel B, Foyer CH. Glutamine and alpha-ketoglutarate are metabolite signals involved in nitrate reductase gene transcription in untransformed and transformed tobacco plants deficient in ferredoxin-glutamine-alpha-ketoglutarate aminotransferase. Planta 213: 265-271 (2001).

Ferrario-Mery S, Thibaud MC, Betsche T, Valadier MH, Foyer CH. Modulation of carbon and nitrogen metabolism, and of nitrate reductase, in untransformed and transformed Nicotiana plumbaginifolia during CO2 enrichment of plants grown in pots and in hydroponic culture. Planta 202: 510-521 (1997).

Ferrario-Mery S, Valadier MH, Foyer CH. Overexpression of nitrate reductase in tobacco delays drought-induced decreases in nitrate reductase activity and mRNA. Plant Physiol. 117: 293-302 (1998).

Fido RJ. Isolation and partial amino acid sequence of domains of nitrate reductase from spinach. Phytochemistry 30: 3519-3523 (1991).

Field SJ, Thornton NP, Anderson LJ, Gates AJ, Reilly A, Jepson BJ, Richardson DJ, George SJ, Cheesman MR, Butt JN. Reductive activation of nitrate reductases. Dalton Trans. 21: 3580-3586 (2005).

Filleur S, Daniel-Vedele F. Expression analysis of a high-affinity nitrate transporter isolated from Arabidopsis thaliana by differential display. Planta 207: 461-469 (1999).

Finnie C, Borch J, Collinge DB. 14-3-3 proteins: eukaryotic regulatory proteins with many functions. Plant Mol. Biol. 40: 545-554 (1999).

Fischer K, Barbier GG, Hecht HJ, Mendel RR, Campbell WH, Schwarz G. Structural basis of eukaryotic nitrate reduction: crystal structures of the nitrate reductase active site. Plant Cell 17: 1167-1179 (2005).

Flores E, Frias JE, Rubio LM, Herrero A. Photosynthetic nitrate assimilation in cyanobacteria. Photosynth. Res. 83: 117-133 (2005).

Flores E, Herrero A. Nitrogen assimilation and nitrogen control in cyanobacteria. Biochem. Soc. Trans. 33: 164-167 (2005).

Flores P, Botella MA, Cerda A, Martinez V. Influence of nitrate level on nitrate assimilation in tomato (Lycopersicon esculentum) plants under saline stress. Can. J. Bot. 82: 207-213 (2004).

Flores P, Botella MA, Martinez V, Cerda A. Ionic and osmotic effects on nitrate reductase activity in tomato seedlings. J. Plant Physiol. 156: 552-557 (2000).

Flores P, Botella MA, Martinez V, Cerda A. Response to salinity of tomato seedlings with a split root system: Nitrate uptake and reduction. J. Plant Nutr. 25: 177-187 (2002).

Forde BG. Nitrate transporters in plants: structure, function and regulation. Biochim. Biophys. Acta 1465: 219-235 (2000).

Fourmond V, Burlat B, Dementin S, Arnoux P, Sabaty M, Boiry S, Guigliarelli B, Bertrand P, Pignol D, Leger C. Major Mo(V) EPR signature of Rhodobacter sphaeroides periplasmic nitrate reductase arising from a dead-end species that activates upon reduction. Relation to other molybdoenzymes from the DMSO reductase family. J. Phys. Chem. B. 112: 15478-15486 (2008).

Foyer CH, Lescure JC, Lefebvre C, Morot-Gaudry JF, Vincentz M, Vaucheret H. Adaptations of photosynthetic electron transport, carbon assimilation, and carbon partitioning in transgenic Nicotiana plumbaginifolia plants to changes in nitrate reductase activity. Plant Physiol. 104: 171-178 (1994).

Foyer CH, Valadier MH, Migge A, Becker TW. Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves. Plant Physiol. 117: 283-292 (1998).

Franco AR, Cardenas J, Fernandez E. Two different carriers transport both ammonium and methylammonium in Chlamydomonas reinhardtii. J. Biol. Chem. 263: 14039-14043 (1988).

Franco AR, Cardenas J, Fernandez E. Involvement of reversible inactivation in the regulation of nitrate reductase enzyme levels in Chlamydomonas reinhardtii. Plant Physiol. 84: 665-669 (1987).

Fresneau C, Ghashghaie J, Cornic G. Drought effect on nitrate reductase and sucrose-phosphate synthase activities in wheat (Triticum durum L.): role of leaf internal CO2. J. Exp. Bot. 58: 2983-2992 (2007).

Frey B, Janel G, Michelsen U, Kersten H. Mutations in the Escherichia coli fnr and tgt genes: control of molybdate reductase activity and the cytochrome d complex by fnr. J. Bacteriol. 171: 1524-1530 (1989).

Frias JE, Flores E, Herrero A. Requirement of the regulatory protein NtcA for the expression of nitrogen assimilation and heterocyst development genes in the cyanobacterium Anabaena sp. PCC 7120. Mol. Microbiol. 14: 823-832. (1994).

Frias JE, Flores E, Herrero A. Nitrate assimilation gene cluster from the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 179: 477-486 (1997).

Frias JE, Herrero A, Flores E. Open reading frame all0601 from Anabaena sp strain PCC 7120 represents a novel gene, cnaT, required for expression of the nitrate assimilation nir operon. J. Bacteriol. 185: 5037-5044 (2003).

Friedberg MA, Hinsdale ME, Shihabi ZK. Analysis of nitrate in biological fluids by capillary electrophoresis. J. Chromatogr. A. 781: 491-496 (1997).

Friemann A, Brinkmann K, Hachtel W. Sequence of a cDNA encoding the bi-specific NAD(P)H-nitrate reductase from the tree Betula pendula and identification of conserved protein regions. Mol. Gen. Genet. 227: 97-105 (1991).

Friemann A, Schmitz S. A new approach for displaying identities and differences among aligned amino acid sequences. Comput. Appl. Biosci. 8: 261-265 (1992).

Fritz C, Mueller C, Matt P, Feil R, Stitt M. Impact of the C-N status on the amino acid profile in tobacco source leaves. Plant Cell Environ. 29: 2055-2076 (2006).

Fritz C, Palacios-Rojas N, Feil R, Stitt M. Regulation of secondary metabolism by the carbon-nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism. Plant J. 46: 533-548 (2006).

Fritz G, Einsle O, Rudolf M, Schiffer A, Kroneck PM. Key bacterial multi-centered metal enzymes involved in nitrate and sulfate respiration. J. Mol. Microbiol. Biotechnol. 10: 223-233 (2005).

Fritz L, Stringher CG, Colepicolo P. Imaging oscillations in Gonyaulax: a chloroplast rhythm of nitrate reductase visualized by immunocytochemistry. Braz. J. Med. Biol. Res. 29: 111-117 (1996).

Fu YH, Feng B, Evans S, Marzluf GA. Sequence-specific DNA binding by NIT4, the pathway-specific regulatory protein that mediates nitrate induction in Neurospora. Mol. Microbiol. 15: 935-942 (1995).

Fu YH, Kneesi JY, Marzluf GA. Isolation of nit-4, the minor nitrogen regulatory gene which mediates nitrate induction in Neurospora crassa. J. Bacteriol. 171: 4067-4070 (1989).

Fu YH, Marzluf GA. Characterization of nit-2, the major nitrogen regulatory gene of Neurospora crassa. Mol. Cell Biol. 7: 1691-1696 (1987).

Fu YH, Marzluf GA. Site-directed mutagenesis of the 'zinc finger' DNA-binding domain of the nitrogen-regulatory protein NIT2 of Neurospora. Mol. Microbiol. 4: 1847-1852 (1990).

Fu YH, Marzluf GA. Molecular cloning and analysis of the regulation of nit-3, the structural gene for nitrate reductase in Neurospora crassa. Proc. Natl. Acad. Sci. U.S.A. 84: 8243-8247 (1987).

Fu YH, Young JL, Marzluf GA. Molecular cloning and characterization of a negative-acting nitrogen regulatory gene of Neurospora crassa. Mol. Gen. Genet. 214: 74-79 (1988).

Fuglsang AT, Borch J, Bych K, Jahn TP, Roepstorff P, Palmgren MG. The binding site for regulatory 14-3-3 protein in plant plasma membrane H+- ATPase: involvement of a region promoting phosphorylation-independent interaction in addition to the phosphorylation-dependent C-terminal end. J. Biol. Chem. 278: 42266-42272 (2003).

Fujii T, Takaya N. Denitrification by the fungus Fusarium oxysporum involves NADH-nitrate reductase. Biosci. Biotechnol. Biochem. 72: 412-420 (2008).

Fujinaga K, Taniguchi Y, Sun Y, Katayama S, Minami J, Matsushita O, Okabe A. Analysis of genes involved in nitrate reduction in Clostridium perfringens. Microbiology 145: 3377-3387 (1999).

Fukuoka H, Ogawa T, Minami H, Yano H, Ohkawa Y. Developmental stage-specific and nitrate-independent regulation of nitrate reductase gene expression in rapeseed. Plant Physiol. 111: 39-47 (1996).

Gajewska E, Sklodowska M. Nickel-induced changes in nitrogen metabolism in wheat shoots. J. Plant Physiol. 166: 1034-1044 (2009).

Gallais A, Hirel B. An approach to the genetics of nitrogen use efficiency in maize. J. Exp. Bot. 55: 295-306 (2004).

Galvan A, Cordoba F, Cardenas J, Fernandez E. Regulation of nitrite uptake and nitrite reductase expression in Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1074: 6-11 (1991).

Ganesan M, Mairh OP, Rao PVS. Effect of pre-incubation of nitrate and ammonium in cultures on nitrate reductase activity in marine red algae Gelidiella and Gracilaria from southeast coast of India. Indian J. Mar. Sci. 30: 232-236 (2001).

Gangeswaran R, Eady RR. Flavodoxin 1 of Azotobacter vinelandii: characterization and role in electron donation to purified assimilatory nitrate reductase. Biochem. J. 317: 103-108 (1996).

Gangeswaran R, Lowe DJ, Eady RR. Purification and characterization of the assimilatory nitrate reductase of Azotobacter vinelandii. Biochem. J. 289: 335-342 (1993).

Gansel X, Munos S, Tillard P, Gojon A. Differential regulation of the NO3- and NH4+ transporter genes AtNrt2.1 and AtAmt1.1 in Arabidopsis: relation with long-distance and local controls by N status of the plant. Plant J. 26: 143-155 (2001).

Gao H, Yang ZK, Barua S, Reed SB, Romine MF, Nealson KH, Fredrickson JK, Tiedje JM, Zhou J. Reduction of nitrate in Shewanella oneidensis depends on atypical NAP and NRF systems with NapB as a preferred electron transport protein from CymA to NapA. ISME J. 3: 966-976 (2009).

Gao Y, Smith GJ, Alberte RS. Nitrate reductase from the marine diatom Skeletonema costatum. Biochemical and immunological characterization. Plant Physiol. 103: 1437-1445 (1993).

Gao Y, Smith GJ, Alberte RS. Temperature dependence of nitrate reductase activity in marine phytoplankton: biochemical analysis and ecological, implications. J. Phycol. 36: 304-313 (2000).

Gao-Rubinelli F, Marzluf GA. Identification and characterization of a nitrate transporter gene in Neurospora crassa. Biochem. Genet. 42: 21-34 (2004).

Garbayo I, Leon R, Vigara J, Vilchez C. Inhibition of nitrate consumption by nitrite in entrapped Chlamydomonas reinhardtii cells. Bioresour. Technol. 81: 207-215 (2002).

Garcia-Lugo P, Gonzalez C, Perdomo G, Brito N, Avila J, de La Rosa JM, Siverio JM. Cloning, sequencing, and expression of H.a.YNR1 and H.a.YNI1, encoding nitrate and nitrite reductases in the yeast Hansenula anomala. Yeast 16: 1099-1105 (2000).

Garcia-Mata C, Lamattina L. Abscisic acid, nitric oxide and stomatal closure - is nitrate reductase one of the missing links? Trends Plant Sci. 8: 20-26 (2003).

Garde J, Kinghorn JR, Tomsett AB. Site-directed mutagenesis of nitrate reductase from Aspergillus nidulans. Identification of some essential and some nonessential amino acids among conserved residues. J. Biol. Chem. 270: 6644-6650 (1995).

Gardea-Torresdey JL, Peralta-Videa JR, Montes M, de la Rosa G, Corral-Diaz B. Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements. Bioresour. Technol. 92: 229-235 (2004).

Gardlik S, Rajagopalan KV. The mechanisms of inactivation of sulfite oxidase by periodate and arsenite. J. Biol. Chem. 266: 16627-16632 (1991).

Gates AJ, Hughes RO, Sharp SR, Millington PD, Nilavongse A, Cole JA, Leach ER, Jepson B, Richardson DJ, Butler CS. Properties of the periplasmic nitrate reductases from Paracoccus pantotrophus and Escherichia coli after growth in tungsten-supplemented media. FEMS Microbiol. Lett. 220: 261-269 (2003).

Gaupels F, Furch AC, Will T, Mur LA, Kogel KH, van Bel AJ. Nitric oxide generation in Vicia faba phloem cells reveals them to be sensitive detectors as well as possible systemic transducers of stress signals. New Phytol. 178: 634-646 (2008).

Gavira M, Roldan MD, Castillo F, Moreno-Vivian C. Regulation of nap gene expression and periplasmic nitrate reductase activity in the phototrophic bacterium Rhodobacter sphaeroides DSM158. J. Bacteriol. 184: 1693-1702 (2002).

Geiger M, Haake V, Ludewig F, Sonnewald U, Stitt M. The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco. Plant Cell Environ. 22: 1177-1199 (1999).

Ghisi R, Trentin AR, Masi A, Ferretti M. Carbon and nitrogen metabolism in barley plants exposed to UV-B radiation. Physiol. Plant. 116: 200-205 (2002).

Giardina G, Rinaldo S, Castiglione N, Caruso M, Cutruzzola F. A dramatic conformational rearrangement is necessary for the activation of DNR from Pseudomonas aeruginosa. Crystal structure of wild-type DNR. Proteins 77: 174-180 (2009).

Giardina G, Rinaldo S, Johnson KA, Di Matteo A, Brunori M, Cutruzzola F. NO sensing in Pseudomonas aeruginosa: structure of the transcriptional regulator DNR. J. Mol. Biol. 378: 1002-1015 (2008).

Gibon Y, Blaesing OE, Hannemann J, Carillo P, Hohne M, Hendriks JH, Palacios N, Cross J, Selbig J, Stitt M. A robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell 16: 3304-3325 (2004).

Gilberthorpe NJ, Poole RK. Nitric oxide homeostasis in Salmonella typhimurium: roles of respiratory nitrate reductase and flavohemoglobin. J. Biol. Chem. 283: 11146-11154 (2008).

Gilliam MB, Sherman MP, Griscavage JM, Ignarro LJ. A spectrophotometric assay for nitrate using NADPH oxidation by Aspergillus nitrate reductase. Anal. Biochem. 212: 359-365 (1993).

Giordani R, Buc J. Evidence for two different electron transfer pathways in the same enzyme, nitrate reductase A from Escherichia coli. Eur. J. Biochem. 271: 2400-2407 (2004).

Giordano G, Boxer DH, Pommier J. Molybdenum cofactor requirement for in vitro activation of apo-molybdoenzymes of Escherichia coli. Mol. Microbiol. 4: 645-650 (1990).

Giordano G, Violet M, Medani CL, Pommier J. A common pathway for the activation of several molybdoenzymes in Escherichia coli K12. Biochim. Biophys. Acta 798: 216-225 (1984).

Giordano M, Pezzoni V, Hell R. Strategies for the allocation of resources under sulfur limitation in the green alga Dunaliella salina. Plant Physiol. 124: 857-864 (2000).

Glaser P, Danchin A, Kunst F, Zuber P, Nakano MM. Identification and isolation of a gene required for nitrate assimilation and anaerobic growth of Bacillus subtilis. J. Bacteriol. 177: 1112-1115 (1995).

Glass ADM, Brito DT, Kaiser BN, Kronzucker HJ, Kumar A, Okamoto M, Rawat SR, Siddiqi MY, Silim SM, Vidmar JJ, Zhuo D. Nitrogen transport in plants, with an emphasis on the regulation of fluxes to match plant demand. J. Plant Nutr. Soil. Sci. 164: 199-207 (2001).

Glayzer DC, Roberts IN, Archer DB, Oliver RP. The isolation of Ant1, a transposable element from Aspergillus niger. Mol. Gen. Genet. 249: 432-438 (1995).

Gobert A, Plassard C. Differential NO3- dependent patterns of NO3- uptake in Pinus pinaster, Rhizopogon roseolus and their ectomycorrhizal association. New Phytol. 154: 509-516 (2002).

Godon C, Krapp A, Leydecker MT, Daniel-Vedele F, Caboche M. Methylammonium-resistant mutants of Nicotiana plumbaginifolia are affected in nitrate transport. Mol. Gen. Genet. 250: 357-366 (1996).

Gonzalez C, Brito N, Marzluf GA. Functional analysis by site-directed mutagenesis of individual amino acid residues in the flavin domain of Neurospora crassa nitrate reductase. Mol. Gen. Genet. 249: 456-464 (1995).

Gonzalez C, Gonzalez G, Avila J, Perez MD, Brito N, Siverio JM. Nitrite causes reversible inactivation of nitrate reductase in the yeast Hansenula anomala. Microbiology 140: 2633-2637 (1994).

Gonzalez C, Siverio JM. Effect of nitrogen source on the levels of nitrate reductase in the yeast Hansenula anomala. J. Gen. Microbiol. 138: 1445-1451 (1992).

Gonzalez CA, Kirkwood C, Kenis JD. Occurrence of a protein that preferentially inactivates phospho-nitrate reductase in oat (Avena sativa) leaves. Phyton-Int. J. Exp. Bot. 69: 109-118 (2000).

Gonzalez EM, Cabrerizo PM, Royuela M, Aparicio-Tejo PM, Arrese-Igor C. Nitrate reduction in tendrils of semi-leafless pea. Physiol. Plant. 111: 329-335 (2001).

Gonzalez PJ, Correia C, Moura I, Brondino CD, Moura JJ. Bacterial nitrate reductases: molecular and biological aspects of nitrate reduction. J. Inorg. Biochem. 100: 1015-1023 (2006).

Gonzalez PJ, Rivas MG, Brondino CD, Bursakov SA, Moura I, Moura JJ. EPR and redox properties of periplasmic nitrate reductase from Desulfovibrio desulfuricans ATCC 27774. J. Biol. Inorg. Chem. 11: 609-616 (2006).

Goodfellow VJ, Solomonson LP, Oaks A. Characterization of a maize root proteinase. Plant Physiol. 101: 415-419 (1993).

Gordillo FJ, Aguilera J, Jimenez C. The response of nutrient assimilation and biochemical composition of Arctic seaweeds to a nutrient input in summer. J. Exp. Bot. 57: 2661-2671 (2006).

Gordillo FJ, Niell FX, Figueroa FL. Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213: 64-70 (2001).

Gorska A, Zwieniecka A, Michele Holbrook N, Zwieniecki MA. Nitrate induction of root hydraulic conductivity in maize is not correlated with aquaporin expression. Planta 228: 989-998 (2008).

Goshima N, Mukai T, Suemori M, Takahashi M, Caboche M, Morikawa H. Emission of nitrous oxide (N2O) from transgenic tobacco expressing antisense NiR mRNA. Plant J. 19: 75-80 (1999).

Goud KV, Sharma R. Retention of photoinduction of cytosolic enzymes in aurea mutant of tomato (Lycopersicon esculentum). Plant Physiol. 105: 643-650 (1994).

Gouesbet G, Abaibou H, Wu LF, Mandrand-Berthelot MA, Blanco C. Osmotic repression of anaerobic metabolic systems in Escherichia coli. J. Bacteriol. 175: 214-221 (1993).

Gouia H, Ghorbal MH, Touraine B. Effects of NaCl on flows of N and mineral ions and on NO3- reduction rate within whole plants of salt-sensitive bean and salt-tolerant cotton. Plant Physiol. 105: 1409-1418 (1994).

Gouka RJ, van Hartingsveldt W, Bovenberg RA, van den Hondel CA, van Gorcom RF. Cloning of the nitrate-nitrite reductase gene cluster of Penicillium chrysogenum and use of the niaD gene as a homologous selection marker. J. Biotechnol. 20: 189-199 (1991).

Gould KS, Lamotte O, Klinguer A, Pugin A, Wendehenne D. Nitric oxide production in tobacco leaf cells: a generalized stress response?. Plant Cell Environ. 26: 1851-1862 (2003).

Gowri G, Kenis JD, Ingemarsson B, Redinbaugh MG, Campbell WH. Nitrate reductase transcript is expressed in the primary response of maize to environmental nitrate. Plant Mol. Biol. 18: 55-64 (1992).

Grabbe R, Kuhn A, Schmitz RA. Cloning, sequencing and characterization of Fnr from Klebsiella pneumoniae. Antonie Van Leeuwenhoek 79: 319-326 (2001).

Graham JE, Spanier JG, Jarvik JW. Isolation and characterization of Pioneer1, a novel Chlamydomonas transposable element. Curr. Genet. 28: 429-436 (1995).

Granbom A, Chow F, Lopes PF, de Oliviera MC, Colepicolo P, de Paula EJ, Pedersen M. Characterisation of nitrate reductase in the marine macroalga Kappaphycus alvarezii (Rhodophyta). Aquat. Bot. 78: 295-305 (2004).

Grappin P, Audeon C, Chupeau MC, Grandbastien MA. Molecular and functional characterization of Slide, an Ac-like autonomous transposable element from tobacco. Mol. Gen. Genet. 252: 386-397 (1996).

Gregory LG, Bond PL, Richardson DJ, Spiro S. Characterization of a nitrate-respiring bacterial community using the nitrate reductase gene (narG) as a functional marker. Microbiology 149: 229-237 (2003).

Gross R, Pisa R, Sanger M, Lancaster CRD, Simon J. Characterization of the menaquinone reduction site in the diheme cytochrome b membrane anchor of Wolinella succinogenes NiFe-hydrogenase. J. Biol. Chem. 279: 274-281 (2004).

Grotjohann N, Kowallik W, Huang Y, Schulte in den Baumen A. Investigations into enzymes of nitrogen metabolism of the ectomycorrhizal basidiomycete, Suillus bovinus. Z. Naturforsch. [C] 55: 203-212 (2000).

Gruber H, Goetinck SD, Kirk DL, Schmitt R. The nitrate reductase-encoding gene of Volvox carteri: map location, sequence and induction kinetics. Gene 120: 75-83 (1992).

Gruber H, Kirzinger SH, Schmitt R. Expression of the Volvox gene encoding nitrate reductase: mutation-dependent activation of cryptic splice sites and intron-enhanced gene expression from a cDNA. Plant Mol. Biol. 31: 1-12 (1996).

Gu L, Lajoie C, Kelly C. Expression of a Phanerochaete chrysosporium manganese peroxidase gene in the yeast Pichia pastoris. Biotechnol. Prog. 19: 1403-1409 (2003).

Guescini M, Pierleoni R, Palma F, Zeppa S, Vallorani L, Potenza L, Sacconi C, Giomaro G, Stocchi V. Characterization of the Tuber borchii nitrate reductase gene and its role in ectomycorrhizae. Mol. Genet. Genomics 269: 807-816 (2003).

Guescini M, Zeppa S, Pierleoni R, Sisti D, Stocchi L, Stocchi V. The expression profile of the Tuber borchii nitrite reductase suggests its positive contribution to host plant nitrogen nutrition. Curr. Genet. 51: 31-41 (2007).

Guigliarelli B, Magalon A, Asso M, Bertrand P, Frixon C, Giordano G, Blasco F. Complete coordination of the four Fe-S centers of the beta subunit from Escherichia coli nitrate reductase. Physiological, biochemical, and EPR characterization of site-directed mutants lacking the highest or lowest potential [4Fe-4S] clusters. Biochemistry 35: 4828-4836 (1996).

Guo S, Bruck H, Sattelmacher B. Effects of supplied nitrogen form on growth and water uptake of French bean (Phaseolus vulgaris L.) plants. Nitrogen form and water uptake. Plant & Soil 239: 267-275 (2002).

Gupta KJ, Stoimenova M, Kaiser WM. In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J. Exp. Bot. 56: 2601-2609 (2005).

Gutierrez JC, Ramos F, Ortner L, Tortolero M. nasST, two genes involved in the induction of the assimilatory nitrite-nitrate reductase operon (nasAB) of Azotobacter vinelandii. Mol. Microbiol. 18: 579-591 (1995).

Gutierrez JC, Santero E, Tortolero M. Ammonium repression of the nitrite-nitrate (nasAB) assimilatory operon of Azotobacter vinelandii is enhanced in mutants expressing the nifO gene at high levels. Mol. Gen. Genet. 255: 172-179 (1997).

Gutierrez RA, Gifford ML, Poultney C, Wang R, Shasha DE, Coruzzi GM, Crawford NM. Insights into the genomic nitrate response using genetics and the Sungear Software System. J. Exp. Bot. 58: 2359-2367 (2007).

Gutthann F, Egert M, Marques A, Appel J. Inhibition of respiration and nitrate assimilation enhances photohydrogen evolution under low oxygen concentrations in Synechocystis sp. PCC 6803. Biochim. Biophys. Acta 1767: 161-169 (2007).

Haas H, Bauer B, Redl B, Stoffler G, Marzluf GA. Molecular cloning and analysis of nre, the major nitrogen regulatory gene of Penicillium chrysogenum. Curr. Genet. 27: 150-158 (1995).

Haas H, Marx F, Graessle S, Stoffler G. Sequence analysis and expression of the Penicillium chrysogenum nitrate reductase encoding gene (niaD). Biochim. Biophys. Acta 1309: 81-84 (1996).

Hachtel W, Strater T. The nitrate reductase promoter of birch directs differential reporter gene expression in tissues of transgenic tobacco. Plant & Soil 221: 33-38 (2000).

Hacisalihoglu G, Hart JJ, Vallejos CE, Kochian LV. The role of shoot-localized processes in the mechanism of Zn efficiency in common bean. Planta 218: 704-711 (2004).

Haine V, Dozot M, Dornand J, Letesson JJ, De Bolle X. NnrA is required for full virulence and regulates several Brucella melitensis denitrification genes. J. Bacteriol. 188: 1615-1619 (2006).

Halford NG, Paul MJ. Carbon metabolite sensing and signalling. Plant Biotechnol. J. 1: 381-398 (2003).

Hall N, Tomsett AB. Structure-function analysis of NADPH:nitrate reductase from Aspergillus nidulans: analysis of altered pyridine nucleotide specificity in vivo. Microbiology 146: 1399-1406 (2000).

Hallmann A, Rappel A, Sumper M. Gene replacement by homologous recombination in the multicellular green alga Volvox carteri. Proc. Natl. Acad. Sci. U.S.A. 94: 7469-7474 (1997).

Han T, Kang SH, Park JS, Lee HK, Brown MT. Physiological responses of Ulva pertusa and U. armoricana to copper exposure. Aquat. Toxicol. 86: 176-184 (2008).

Hansch R, Fessel DG, Witt C, Hesberg C, Hoffmann G, Walch-Liu P, Engels C, Kruse J, Rennenberg H, Kaiser WM, Mendel RR. Tobacco plants that lack expression of functional nitrate reductase in roots show changes in growth rates and metabolite accumulation. J. Exp. Bot. 52: 1251-1258 (2001).

Harmon AC, Gribskov M, Harper JF. CDPKs - a kinase for every Ca2+ signal? Trends Plant Sci. 5: 154-159 (2000).

Harris N, Foster JM, Kumar A, Davies HV, Gebhardt C, Wray JL. Two cDNAs representing alleles of the nitrate reductase gene of potato (Solanum tuberosum L. cv. Desiree): sequence analysis, genomic organization and expression. J. Exp. Bot. 51: 1017-1026 (2000).

Harrison J, Hirel B, Limami AM. Variation in nitrate uptake and assimilation between two ecotypes of Lotus japonicus and their recombinant inbred lines. Physiol. Plant. 120: 124-131 (2004).

Harthill JE, Meek SE, Morrice N, Peggie MW, Borch J, Wong BH, Mackintosh C. Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2-deoxyglucose. Plant J. 47: 211-223 (2006).

Hartig E, Schiek U, Vollack KU, Zumft WG. Nitrate and nitrite control of respiratory nitrate reduction in denitrifying Pseudomonas stutzeri by a two-component regulatory system homologous to NarXL of Escherichia coli. J. Bacteriol. 181: 3658-3665 (1999).

Hasona A, Ray RM, Shanmugam KT. Physiological and genetic analyses leading to identification of a biochemical role for the moeA (molybdate metabolism) gene product in Escherichia coli. J. Bacteriol. 180: 1466-1472 (1998).

Hasona A, Self WT, Shanmugam KT. Transcriptional regulation of the moe (molybdate metabolism) operon of Escherichia coli. Arch. Microbiol. 175: 178-188 (2001).

Hawker KL, Montague P, Kinghorn JR. Nitrate reductase and nitrite reductase transcript levels in various mutants of Aspergillus nidulans: confirmation of autogenous regulation. Mol. Gen. Genet. 231: 485-488 (1992).

Hawker KL, Montague P, Marzluf GA, Kinghorn JR. Heterologous expression and regulation of the Neurospora crassa nit-4 pathway-specific regulatory gene for nitrate assimilation in Aspergillus nidulans. Gene 100: 237-240 (1991).

Heath-Pagliuso S, Huffaker RC, Allard RW. Inheritance of nitrite reductase and regulation of nitrate reductase, nitrite reductase, and glutamine synthetase isozymes. Plant Physiol. 76: 353-358 (1984).

Heck IS, Ninnemann H. Molybdenum cofactor biosynthesis in Neurospora crassa: biochemical characterization of pleiotropic molybdoenzyme mutants nit-7, nit-8, nit-9A, B and C. Photochem. Photobiol. 61: 54-60 (1995).

Heck IS, Schrag JD, Sloan J, Millar LJ, Kanan G, Kinghorn JR, Unkles SE. Mutational analysis of the gephyrin-related molybdenum cofactor biosynthetic gene cnxe from the lower eukaryote Aspergillus nidulans. Genetics 161: 623-632 (2002).

Heimer YM, Brusslan JA, Kenigsbuch D, Tobin EM. A chimeric Lhcb::Nia gene: an inducible counter selection system for mutants in the phytochrome signal transduction pathway. Plant Mol. Biol. 27: 129-136 (1995).

Hemschemeier S, Grund M, Keuntje B, Eichenlaub R. Isolation of Escherichia coli mutants defective in uptake of molybdate. J. Bacteriol. 173: 6499-6506 (1991).

Henriksen GH, Spanswick RM. Investigation of the apparent induction of nitrate uptake in barley (Hordeum vulgare L.) using NO3--selective microelectrodes. Plant Physiol. 103: 885-892 (1993).

Henry S, Texier S, Hallet S, Bru D, Dambreville C, Cheneby D, Bizouard F, Germon JC, Philippot L. Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates. Environ. Microbiol. 10: 3082-3092 (2008).

Hernandez D, Dias FM, Rowe JJ. Nitrate transport and its regulation by O2 in Pseudomonas aeruginosa. Arch. Biochem. Biophys. 286: 159-163 (1991).

Herrero A, Flores E. Transport of basic amino acids by the dinitrogen-fixing cyanobacterium Anabaena PCC 7120. J. Biol. Chem. 265: 3931-3935 (1990).

Herrero A, Flores E, Guerrero MG. Regulation of the nitrate reductase level in Anacystis nidulans: activity decay under nitrogen stress. Arch. Biochem. Biophys. 234: 454-459 (1984).

Hess WR, Muller A, Nagy F, Borner T. Ribosome-deficient plastids affect transcription of light-induced nuclear genes: genetic evidence for a plastid-derived signal. Mol. Gen. Genet. 242: 305-312 (1994).

Hesse H, Trachsel N, Suter M, Kopriva S, Von Ballmoos P, Rennenberg H, Brunold C. Effect of glucose on assimilatory sulphate reduction in Arabidopsis thaliana roots. J. Exp. Bot. 54: 1701-1709 (2003).

Hettmann T, Anemuller S, Borcherding H, Mathe L, Steinrucke P, Diekmann S. Pseudomonas stutzeri soluble nitrate reductase alphabeta-subunit is a soluble enzyme with a similar electronic structure at the active site as the inner membrane-bound alphabetagamma holoenzyme. FEBS Lett. 534: 143-150 (2003).

Hildebrandt U, Schmelzer E, Bothe H. Expression of nitrate transporter genes in tomato colonized by an arbuscular mycorrhizal fungus. Physiol. Plant. 115: 125-136 (2002).

Hille R. Molybdenum enzymes containing the pyranopterin cofactor: An overview. Met. Ions Biol. Syst. 39: 187-226 (2002).

Hipkin CR, Kau DA, Cannons AC. Further characterization of the assimilatory nitrate reductase from the yeast Candida nitratophila. J. Gen. Microbiol. 139: 473-478 (1993).

Hipkin CR, Kau DA, Cannons AC. Evidence that the glutamine-stimulated loss of nitrate reductase protein from the yeast Candida nitratophila is not the result of inducer exclusion. Biochem. J. 295: 611-615 (1993).

Hirasawa M, Rubio LM, Griffin JL, Flores E, Herrero A, Li J, Kim SK, Hurley JK, Tollin G, Knaff DB. Complex formation between ferredoxin and Synechococcus ferredoxin : nitrate oxidoreductase. Biochim. Biophys. Acta 1608: 155-162 (2004).

Hirel B, Bertin P, Quillere I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallais A. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol. 125: 1258-1270 (2001).

Hirel B, Martin A, Terce-Laforgue T, Gonzalez-Moro MB, Estavillo JM. Physiology of maize I: A comprehensive and integrated view of nitrogen metabolism in a C4 plant. Physiol. Plant. 124: 167-177 (2005).

Hoffmann T, Frankenberg N, Marino M, Jahn D. Ammonification in Bacillus subtilis utilizing dissimilatory nitrite reductase is dependent on resDE. J. Bacteriol. 180: 186-189 (1998).

Hoffmann T, Troup B, Szabo A, Hungerer C, Jahn D. The anaerobic life of Bacillus subtilis: cloning of the genes encoding the respiratory nitrate reductase system. FEMS Microbiol. Lett. 131: 219-225 (1995).

Hogberg P, Hogbom L, Schinkel H. Nitrogen-related root variables of trees along an N-deposition gradient in Europe. Tree Physiol. 18: 823-828 (1998).

Hogbom L, Nilsson U, Orlander G. Nitrate dynamics after clear felling monitored by in vivo nitrate reductase activity (NRA) and natural N-15 abundance of Deschampsia flexuosa (L.) Trin. For. Ecol. Manage. 160: 273-280 (2002).

Howard K, Foster SG, Cooley RN, Caten CE. Disruption, replacement, and cosuppression of nitrate assimilation genes in Stagonospora nodorum. Fungal Genet. Biol. 26: 152-162 (1999).

Howarth DG, Baum DA. Phylogenetic utility of a nuclear intron from nitrate reductase for the study of closely related plant species. Mol. Phylogenet. Evol. 23: 525-528 (2002).

Hristozkova M, Geneva M, Stancheva I, Georgiev G. Response of inoculated foliar fed pea plants (Pisum sativum L.) to reduced Mo supply. Acta Biol. Hung. 58: 87-92 (2007).

Hruby M, Cigler P, Kuzel S. Contribution to understanding the mechanism of titanium action in plant. J. Plant Nutr. 25: 577-598 (2002).

Hu X, Neill SJ, Tang Z, Cai W. Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol. 137: 663-670 (2005).

Hua-Van A, Langin T, Daboussi MJ. Aberrant transposition of a Tc1-mariner element, impala, in the fungus Fusarium oxysporum. Mol. Genet. Genomics 267: 79-87 (2002).

Huang Z, Liang M, Peng J, Xing T, Wang X. Exogenous ammonium inhibits petal pigmentation and expansion in Gerbera hybrida. Physiol. Plant. 133: 254-265 (2008).

Huber JL, Huber SC, Campbell WH, Redinbaugh MG. Reversible light/dark modulation of spinach leaf nitrate reductase activity involves protein phosphorylation. Arch. Biochem. Biophys. 296: 58-65 (1992).

Huber JL, Redinbaugh MG, Huber SC, Campbell WH. Regulation of maize leaf nitrate reductase activity involves both gene expression and protein phosphorylation. Plant Physiol. 106: 1667-1674 (1994).

Huber SC, Huber JL, Campbell WH, Redinbaugh MG. Comparative-studies of the light-modulation of nitrate reductase and sucrose-phosphate synthase activities in spinach leaves. Plant Physiol. 100: 706-712 (1992).

Hugo AA, De Antoni GL, Perez PF. Lactobacillus delbrueckii subsp lactis strain CIDCA 133 inhibits nitrate reductase activity of Escherichia coli. Int. J. Food Microbiol. 111: 191-196 (2006).

Hunt J. A method for measuring nitrite in fresh vegetables. Food Addit. Contam. 11: 317-325 (1994).

Hussain H, Grove J, Griffiths L, Busby S, Cole J. A seven-gene operon essential for formate-dependent nitrite reduction to ammonia by enteric bacteria. Mol. Microbiol. 12: 153-163 (1994).

Hwang CF, Lin Y, D'Souza T, Cheng CL. Sequences necessary for nitrate-dependent transcription of Arabidopsis nitrate reductase genes. Plant Physiol. 113: 853-862 (1997).

Hyde GE, Campbell WH. High-level expression in Escherichia coli of the catalytically active flavin domain of corn leaf NADH:nitrate reductase and its comparison to human NADH:cytochrome B5 reductase. Biochem. Biophys. Res. Commun. 168: 1285-1291 (1990).

Hyde GE, Crawford NM, Campbell WH. The sequence of squash NADH:nitrate reductase and its relationship to the sequences of other flavoprotein oxidoreductases. A family of flavoprotein pyridine nucleotide cytochrome reductases. J. Biol. Chem. 266: 23542-23547 (1991).

Hyde GE, Wilberding JA, Meyer AL, Campbell ER, Campbell WH. Monoclonal antibody-based immunoaffinity chromatography for purifying corn and squash NADH: nitrate reductases. Evidence for an interchain disulfide bond in nitrate reductase. Plant Mol. Biol. 13: 233-246 (1989).

Iglesias-Bartolome R, Gonzalez CA, Kenis JD. Nitrate reductase dephosphorylation is induced by sugars and sugar-phosphates in corn leaf segments. Physiol. Plant. 122: 62-67 (2004).

Ikeda E, Andou S, Iwama U, Kato C, Horikoshi K, Tamegai H. Physiological roles of two dissimilatory nitrate reductases in the deep-sea denitrifier Pseudomonas sp. strain MT-1. Biosci. Biotechnol. Biochem. 73: 896-900 (2009).

Ikeda Y, Koizumi N, Kusano T, Sano H. Specific binding of a 14-3-3 protein to autophosphorylated WPK4, an SNF1-related wheat protein kinase, and to WPK4-phosphorylated nitrate reductase. J. Biol. Chem. 275: 31695-31700 (2000).

Ilbert M, Mejean V, Giudici-Orticoni MT, Samama JP, Iobbi-Nivol C. Involvement of a mate chaperone (TorD) in the maturation pathway of molybdoenzyme TorA. J. Biol. Chem. 278: 28787-28792 (2003).

Inokuchi R, Kuma KI, Miyata T, Okada M. Nitrogen-assimilating enzymes in land plants and algae: phylogenic and physiological perspectives. Physiol. Plant. 116: 1 (2002).

Iobbi-Nivol C, Santini CL, Blasco F, Giordano G. Purification and further characterization of the second nitrate reductase of Escherichia coli K12. Eur. J. Biochem. 188: 679-687 (1990).

Iwamoto M, Asanuma N, Hino T. Effects of energy substrates on nitrate reduction and nitrate reductase activity in a ruminal bacterium, Selenomonas ruminantium. Anaerobe 7: 315-321 (2001).

Izmailov SF. Saturation and utilization of nitrate pools in pea and sugar beet leaves. Russ. J. Plant Physiol. 51: 189-193 (2004).

Izmailov SF, Bruskova RK, Chechetka SA, Kirnos SV, Nikiforova A, Satskaya MV. Nitrate assimilation function of yellow lupine root nodules? Biol. Bull. 30: 140-147 (2003).

Jacobshagen S, Kindle KL, Johnson CH. Transcription of CABII is regulated by the biological clock in Chlamydomonas reinhardtii. Plant Mol. Biol. 31: 1173-1184. (1996).

Jansson EA, Huang L, Malkey R, Govoni M, Nihlen C, Olsson A, Stensdotter M, Petersson J, Holm L, Weitzberg E, Lundberg JO. A mammalian functional nitrate reductase that regulates nitrite and nitric oxide homeostasis. Nat. Chem. Biol. 4: 411-417 (2008).

Jarai G, Truong HN, Daniel-Vedele F, Marzluf GA. NIT2, the nitrogen regulatory protein of Neurospora crassa, binds upstream of nia, the tomato nitrate reductase gene, in vitro. Curr. Genet. 21: 37-41 (1992).

Jargeat P, Gay G, Debaud JC, Marmeisse R. Transcription of a nitrate reductase gene isolated from the symbiotic basidiomycete fungus Hebeloma cylindrosporum does not require induction by nitrate. Mol. Gen. Genet. 263: 948-956 (2000).

Jargeat P, Rekangalt D, Verner MC, Gay G, Debaud JC, Marmeisse R, Fraissinet-Tachet L. Characterisation and expression analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum. Curr. Genet. 43: 199-205 (2003).

Jenkins BD, Zehr JP, Gibson A, Campbell L. Cyanobacterial assimilatory nitrate reductase gene diversity in coastal and oligotrophic marine environments. Environ. Microbiol. 8: 2083-2095 (2006).

Jepson BJ, Marietou A, Mohan S, Cole JA, Butler CS, Richardson DJ. Evolution of the soluble nitrate reductase: defining the monomeric periplasmic nitrate reductase subgroup. Biochem. Soc. Trans. 34: 122-126 (2006).

Jepson BJ, Mohan S, Clarke TA, Gates AJ, Cole JA, Butler CS, Butt JN, Hemmings AM, Richardson DJ. Spectropotentiometric and structural analysis of the periplasmic nitrate reductase from Escherichia coli. J. Biol. Chem. 282: 6425-6437 (2007).

Jiang J, Holm RH. Reaction systems related to dissimilatory nitrate reductase: nitrate reduction mediated by bis(dithiolene)tungsten complexes. Inorg. Chem. 44: 1068-1072 (2005).

Jin CW, Du ST, Zhang YS, Lin XY, Tang CX. Differential regulatory role of nitric oxide in mediating nitrate reductase activity in roots of tomato (Solanum lycocarpum). Ann. Bot. (Lond.) 104: 9-17 (2009).

Jochem FJ, Smith GJ, Gao Y, Zimmerman RC, Cabello-Pasini A, Kohrs DG, Alberte RS. Cytometric quantification of nitrate reductase by immunolabeling in the marine diatom Skeletonema costatum. Cytometry 39: 173-178 (2000).

Johnstone IL, McCabe PC, Greaves P, Gurr SJ, Cole GE, Brow MA, Unkles SE, Clutterbuck AJ, Kinghorn JR, Innis MA. Isolation and characterisation of the crnA-niiA-niaD gene cluster for nitrate assimilation in Aspergillus nidulans. Gene 90: 181-192 (1990).

Jonassen EM, Lea US, Lillo C. HY5 and HYH are positive regulators of nitrate reductase in seedlings and rosette stage plants. Planta 227: 559-564 (2008).

Jones TL, Tucker DE, Ort DR. Chilling delays circadian pattern of sucrose phosphate synthase and nitrate reductase activity in tomato. Plant Physiol. 118: 149-158 (1998).

Jongebloed U, Szederkenyi J, Hartig K, Schobert C, Komor E. Sequence of morphological and physiological events during natural ageing and senescence of a castor bean leaf: sieve tube occlusion and carbohydrate back-up precede chlorophyll degradation. Physiol. Plant. 120: 338-346 (2004).

Jormakka M, Byrne B, Iwata S. Formate dehydrogenase - a versatile enzyme in changing environments. Curr. Opin. Struct. Biol. 13: 418-423 (2003).

Jossier M, Bouly JP, Meimoun P, Arjmand A, Lessard P, Hawley S, Grahame Hardie D, Thomas M. SnRK1 (SNF1-related kinase 1) has a central role in sugar and ABA signalling in Arabidopsis thaliana. Plant J. 59: 316-328 (2009).

Kagiwada S, Nakamae I, Kayukawa M, Kato S. Cytoskeleton-dependent polarized secretion of arylsulfatase in the unicellular green alga, Chlamydomonas reinhardtii. Plant Sci. 166: 1515-1524 (2004).

Kaiser BN, Gridley KL, Ngaire Brady J, Phillips T, Tyerman SD. The role of molybdenum in agricultural plant production. Ann. Bot. (Lond.) 96: 745-754 (2005).

Kaiser WM, Huber SC. Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. J. Exp. Bot. 52: 1981-1989 (2001).

Kaiser WM, Huber SC. Posttranslational regulation of nitrate reductase in higher plants. Plant Physiol. 106: 817-821 (1994).

Kaiser WM, Kandlbinder A, Stoimenova M, Glaab J. Discrepancy between nitrate reduction rates in intact leaves and nitrate reductase activity in leaf extracts: what limits nitrate reduction in situ? Planta 210: 801-807 (2000).

Kaiser WM, Weiner H, Kandlbinder A, Tsai CB, Rockel P, Sonoda M, Planchet E. Modulation of nitrate reductase: some new insights, an unusual case and a potentially important side reaction. J. Exp. Bot. 53: 875-882 (2002).

Kaldorf M, Schmelzer E, Bothe H. Expression of maize and fungal nitrate reductase genes in arbuscular mycorrhiza. Mol. Plant Microbe Interact. 11: 439-448 (1998).

Kalman LV, Gunsalus RP. Nitrate- and molybdenum-independent signal transduction mutations in narX that alter regulation of anaerobic respiratory genes in Escherichia coli. J. Bacteriol. 172: 7049-7056 (1990).

Kamiya A, Saitoh T. Blue-light-control of the uptake of amino acids and of ammonia in Chlorella mutants. Physiol. Plant. 116: 248-254 (2002).

Kamps A, Achebach S, Fedtke I, Unden G, Gotz F. Staphylococcal NreB: an O2-sensing histidine protein kinase with an O-2- labile iron-sulphur cluster of the FNR type. Mol. Microbiol. 52: 713-723 (2004).

Kanamaru K, Wang R, Su W, Crawford NM. Ser-534 in the hinge 1 region of Arabidopsis nitrate reductase is conditionally required for binding of 14-3-3 proteins and in vitro inhibition. J. Biol. Chem. 274: 4160-4165 (1999).

Kandeler E, Brune T, Enowashu E, Dorr N, Guggenberger G, Lamersdorf N, Philippot L. Response of total and nitrate-dissimilating bacteria to reduced N deposition in a spruce forest soil profile. FEMS Microbiol. Ecol. 67: 444-454 (2009).

Kandeler E, Deiglmayr K, Tscherko D, Bru D, Philippot L. Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl. Environ. Microbiol. 72: 5957-5962 (2006).

Kandlbinder A, Weiner H, Kaiser WM. Nitrate reductases from leaves of Ricinus (Ricinus communis L.) and spinach (Spinacia oleracea L.) have different regulatory properties. J. Exp. Bot. 51: 1099-1105 (2000).

Kang RJ, Shi DJ, Cong W, Cai ZL, Ouyang F. Regulation of CO on heterocyst differentiation and nitrate uptake in the cyanobacterium Anabaena sp. PCC 7120. J. Appl. Microbiol. 98: 693-698 (2005).

Kant S, Bi YM, Weretilnyk E, Barak S, Rothstein SJ. The Arabidopsis halophytic relative, Thellungiella halophila, tolerates nitrogen limiting conditions by maintaining growth, nitrogen uptake and assimilation. Plant Physiol. 147: 1168-1180 (2008).

Kappler U, Bennett B, Rethmeier J, Schwarz G, Deutzmann R, McEwan AG, Dahl C. Sulfite:cytochrome c oxidoreductase from Thiobacillus novellus: purification, characterization, and molecular biology of a heterodimeric member of the sulfite oxidase family. J. Biol. Chem. 275: 13202-13212 (2000).

Kato K, Okamura Y, Kanahama K, Kanayama Y. Nitrate-independent expression of plant nitrate reductase in Lotus japonicus root nodules. J. Exp. Bot. 54: 1685-1690 (2003).

Kawachi T, Shoji Y, Sugimoto T, Oji YL, Kleinhofs A, Warner RL, Ohtake N, Ohyama T, Sueyoshi K. Role of xylem sap nitrate in the regulation of nitrate reductase gene expression in leaves of barley (Hordeum vulgare L.) seedlings. Soil Sci. Plant Nutr. 48: 79-85 (2002).

Kay CJ, Barber MJ. EPR and kinetic analysis of the interaction of halides and phosphate with nitrate reductase. Biochemistry 28: 5750-5758 (1989).

Kay CJ, Barber MJ, Notton BA, Solomonson LP. Oxidation--reduction midpoint potentials of the flavin, haem and Mo-pterin centres in spinach (Spinacia oleracea L.) nitrate reductase. Biochem. J. 263: 285-287 (1989).

Kay CJ, Barber MJ, Solomonson LP, Kau D, Cannons AC, Hipkin CR. Spectroscopic, thermodynamic and kinetic properties of Candida nitratophila nitrate reductase. Biochem. J. 272: 545-548 (1990).

Kay CJ, Solomonson LP, Barber MJ. Electrochemical and kinetic analysis of electron-transfer reactions of Chlorella nitrate reductase. Biochemistry 30: 11445-11450 (1991).

Kaye C, Crawford NM, Malmberg RL. Constitutive non-inducible expression of the Arabidopsis thaliana Nia 2 gene in two nitrate reductase mutants of Nicotiana plumbaginifolia. Plant Mol. Biol. 33: 953-964 (1997).

Kemppainen M, Duplessis S, Martin F, Pardo AG. RNA silencing in the model mycorrhizal fungus Laccaria bicolor: gene knock-down of nitrate reductase results in inhibition of symbiosis with Populus. Environ. Microbiol. Apr 8 [Epub ahead of print] (2009).

Kern M, Simon J. Characterization of the NapGH quinol dehydrogenase complex involved in Wolinella succinogenes nitrate respiration. Mol. Microbiol. 69: 1137-1152 (2008).

Khan A, Sarkar D. Identification of a respiratory-type nitrate reductase and its role for survival of Mycobacterium smegmatis in Wayne model. Microb. Pathog. 41: 90-95 (2006).

Khan NA, Mir MR, Nazar R, Singh S. The application of ethephon (an ethylene releaser) increases growth, photosynthesis and nitrogen accumulation in mustard (Brassica juncea L.) under high nitrogen levels. Plant Biol. (Stuttg.) 10: 534-538 (2008).

Kikuchi H, Aichi M, Suzuki I, Omato T. Positive regulation by nitrite of the nitrate assimilation operon in the cyanobacteria Synechococcus sp. strain PCC 7942 and Plectonema boryanum. J. Bacteriol. 178: 5822-5825 (1996).

Kiley PJ, Reznikoff WS. Fnr mutants that activate gene expression in the presence of oxygen. J. Bacteriol. 173: 16-22 (1991).

Kim CH, Jun SS, Hong YN. GmNiR-1, a soybean nitrite reductase gene that is regulated by nitrate and light. Aust. J. Plant Physiol. 28: 1031-1038 (2001).

Kim SW, Fushinobu S, Zhou S, Wakagi T, Shoun H. Eukaryotic nirK genes encoding copper-containing nitrite reductase: originating from the protomitochondrion? Appl. Environ. Microbiol. 75: 2652-2658 (2009).

Kindle KL. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. U.S.A. 87: 1228-1232 (1990).

Kindle KL, Schnell RA, Fernandez E, Lefebvre PA. Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J. Cell Biol. 109: 2589-2601 (1989).

King BJ, Siddiqi MY, Ruth TJ, Warner RL, Glass A. Feedback regulation of nitrate influx in barley roots by nitrate, nitrite, and ammonium. Plant Physiol. 102: 1279-1286 (1993).

Klein D, Morcuende R, Stitt M, Krapp A. Regulation of nitrate reductase expression in leaves by nitrate and nitrogen metabolism is completely overridden when sugars fall below a critical level. Plant Cell Environ. 23: 863-871 (2000).

Kleinhenz DJ, Fan X, Rubin J, Hart CM. Detection of endothelial nitric oxide release with the 2,3-diaminonapthalene assay. Free Radic. Biol. Med. 34: 856-861 (2003).

Kleinhofs A, Warner RL, Lawrence JM, Melzer JM, Jeter JM, Kudrna DA. Molecular genetics of nitrate reductase in barley. In "Molecular and Genetic Aspects of Nitrate Assimilation" (JL Wray, JR Kinghorn eds) Oxford Science Publications, Oxford, pp. 197-226 (1989).

Klimek M, Lejczak B, Kafarski P, Forlani G. Metabolism of the phosphonate herbicide glyphosate by a non-nitrate-utilizing strain of Penicillium chrysogenum. Pest Manag. Sci. 57: 815-821 (2001).

Koba K, Hirobe M, Koyama L, Kohzu A, Tokuchi N, Nadelhoffer KJ, Wada E, Takeda H. Natural N-15 abundance of plants and soil N in a temperate coniferous forest. Ecosystems 6: 457-469 (2003).

Kobayashi M, Rodriguez R, Lara C, Omata T. Involvement of the C-terminal domain of an ATP-binding subunit in the regulation of the ABC-type nitrate/nitrite transporter of the Cyanobacterium synechococcus sp. strain PCC 7942. J. Biol. Chem. 272: 27197-27201 (1997).

Kobayashi M, Takatani N, Tanigawa M, Omata T. Posttranslational regulation of nitrate assimilation in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 187: 498-506 (2005).

Koiwai H, Akaba S, Seo M, Komano T, Koshiba T. Functional expression of two Arabidopsis aldehyde oxidases in the yeast Pichia pastoris. J. Biochem. 127: 659-664 (2000).

Kolanus J, Michalczyk J, Flint HJ, Barthelmess IB. Restricted activation of general amino acid control under conditions of glutamine limitation in Neurospora crassa. Mol. Gen. Genet. 223: 443-448 (1990).

Kolb KJ, Evans RD. Influence of nitrogen source and concentration on nitrogen isotopic discrimination in two barley genotypes (Hordeum vulgare L.). Plant Cell Environ. 26: 1431-1440 (2003).

Kolbert Z, Bartha B, Erdei L. Exogenous auxin-induced NO synthesis is nitrate reductase-associated in Arabidopsis thaliana root primordia. J. Plant Physiol. 165: 967-975 (2008).

Kolodny NH, Bauer D, Bryce K, Klucevsek K, Lane A, Medeiros L, Mercer W, Moin S, Park D, Petersen J, Wright J, Yuen C, Wolfson AJ, Allen MM. Effect of nitrogen source on cyanophycin synthesis in Synechocystis sp. strain PCC 6308. J. Bacteriol. 188: 934-940 (2006).

Kong FX, Liu Y, Hu W, Shen PP, Zhou CL, Wang LS. Biochemical responses of the mycorrhizae in Pinus massoniana to combined effects of Al, Ca and low pH. Chemosphere 40: 311-318 (2000).

Kopriva S. Regulation of sulfate assimilation in Arabidopsis and beyond. Ann. Bot. (Lond.) 97: 479-495 (2006).

Kopriva S, Muheim R, Koprivova A, Trachsel N, Catalano C, Suter M, Brunold C. Light regulation of assimilatory sulphate reduction in Arabidopsis thaliana. Plant J. 20: 37-44 (1999).

Kopriva S, Rennenberg H. Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism. J. Exp. Bot. 55: 1831-1842 (2004).

Kopriva S, Suter M, Von Ballmoos P, Hesse H, Krahenbuhl U, Rennenberg H, Brunold C. Interaction of sulfate assimilation with carbon and nitrogen metabolism in Lemna minor. Plant Physiol. 130: 1406-1413 (2002).

Kosugi S, Ohashi Y. DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J. 30: 337-348 (2002).

Koyama L, Tokuchi N. Effects of NO3- availability on NO3- use in seedlings of three woody shrub species. Tree Physiol. 23: 281-288 (2003).

Krafft T, Bowen A, Theis F, Macy JM. Cloning and sequencing of the genes encoding the periplasmic-cytochrome B-containing selenate reductase of Thauera selenatis. DNA Seq. 10: 365-377 (2000).

Kroneck PM, Abt DJ. Molybdenum in nitrate reductase and nitrite oxidoreductase. Met. Ions Biol. Syst. 39: 369-403 (2002).

Kronenberger J, Lepingle A, Caboche M, Vaucheret H. Cloning and expression of distinct nitrite reductases in tobacco leaves and roots. Mol. Gen. Genet. 236: 203-208 (1993).

Kronzucker HJ, Schjoerring JK, Erner Y, Kirk GJD, Siddiqi MY, Glass ADM. Dynamic interactions between root NH4+ influx and long-distance N translocation in rice: Insights into feedback processes. Plant Cell Physiol. 39: 1287-1293 (1998).

Kronzucker HJ, Siddiqi MY, Glass ADM. Compartmentation and flux characteristics of nitrate in spruce. Planta 196: 674-682 (1995).

Kruse J, Hetzger I, Hansch R, Mendel RR, Walch-Liu P, Engels C, Rennenberg H. Elevated pCO2 favours nitrate reduction in the roots of wild-type tobacco (Nicotiana tabacum cv. Gat.) and significantly alters N-metabolism in transformants lacking functional nitrate reductase in the roots. J. Exp. Bot. 53: 2351-2367 (2002).

Kruse J, Hetzger I, Hansch RH, Mendel RR, Rennenberg H. Elevated pCO2 affects C and N metabolism in wild type and transgenic tobacco exhibiting altered C/N balance in metabolite analysis. Plant Biol. 5: 540-549 (2003).

Kruse J, Kopriva S, Hansch R, Krauss GJ, Mendel RR, Rennenberg H. Interaction of sulfur and nitrogen nutrition in tobacco (Nicotiana tabacum) plants: significance of nitrogen source and root nitrate reductase. Plant Biol. (Stuttg.) 9: 638-646 (2007).

Krywult M, Smykla J, Kinnunen H, Martz F, Sutinen ML, Lakkala K, Turunen M. Influence of solar UV radiation on the nitrogen metabolism in needles of Scots pine (Pinus sylvestris L.). Environ. Pollut. 156: 1105-1111 (2008).

Krywult M, Turunen M, Sutinen ML, Derome K, Norokorpi Y. Nitrate reductase activity in some subarctic species and UV influence in the foliage of Betula pendula Roth. seedlings. Sci. Total Environ. 284: 149-155 (2002).

Kucera I. Inhibition by phenylglyoxal of nitrate transport in Paracoccus denitrificans: a comparison with the effect of a protonophorous uncoupler. Arch. Biochem. Biophys. 409: 327-334 (2003).

Kucera I. Passive penetration of nitrate through the plasma membrane of Paracoccus denitrificans and its potentiation by the lipophilic tetraphenylphosphonium cation. Biochim. Biophys. Acta 1557: 119-124 (2003).

Kuhlemeier CJ, Logtenberg T, Stoorvogel W, van Heugten HA, Borrias WE, van Arkel GA. Cloning of nitrate reductase genes from the cyanobacterium Anacystis nidulans. J. Bacteriol. 159: 36-41 (1984).

Kulma A, Villadsen D, Campbell DG, Meek SE, Harthill JE, Nielsen TH, MacKintosh C. Phosphorylation and 14-3-3 binding of Arabidopsis 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Plant J. 37: 654-667 (2004).

Kumar PA, Kruse E, Andriesse X, Weisbeek P, Kloppstech K. Integration of a cyanobacterial protein involved in nitrate reduction (narB) into isolated Synechococcus but not into pea thylakoid membranes. Eur. J. Biochem. 214: 533-537 (1993).

Kumar SN, Singh CP. An analysis of seasonal effects on leaf nitrate reductase activity and nitrogen accumulation in maize (Zea mays L.). J. Agron. Crop Sci. 188: 133-137 (2002).

Kuo WN, Kocis JM, Webb J. Protein denitration/modification by Escherichia coli nitrate reductase and mammalian cytochrome P-450 reductase. Front. Biosci. 7: A9-A14 (2002).

Kuper J, Palmer T, Mendel RR, Schwarz G. Mutations in the molybdenum cofactor biosynthetic protein Cnx1G from Arabidopsis thaliana define functions for molybdopterin binding, molybdenum insertion, and molybdenum cofactor stabilization. Proc. Natl. Acad. Sci. U.S.A. 97: 6475-6480 (2000).

Kurakov AV, Nosikov AN, Skrynnikova EV, L'vov NP. Nitrate reductase and nitrous oxide production by Fusarium oxysporum 11dn1 under aerobic and anaerobic conditions. Curr. Microbiol. 41: 114-119 (2000).

Kuramae EE, Fenille RC, de Rosa VE. Identification of 14-3-3-like protein in sugarcane (Saccharum officinarum). Genet. Mol. Biol. 24: 43-48 (2001).

L'vov NP, Nosikov AN, Antipov AN. Tungsten-containing enzymes. Biochem. (Moscow) 67: 196-200 (2002).

LaBrie ST, Crawford NM. A glycine to aspartic acid change in the MoCo domain of nitrate reductase reduces both activity and phosphorylation levels in Arabidopsis. J. Biol. Chem. 269: 14497-14501 (1994).

LaBrie ST, Wilkinson JQ, Tsay YF, Feldmann KA, Crawford NM. Identification of two tungstate-sensitive molybdenum cofactor mutants, chl2 and chl7, of Arabidopsis thaliana. Mol. Gen. Genet. 233: 169-176 (1992).

Ladendorf O, Brachmann A, Kamper J. Heterologous transposition in Ustilago maydis. Mol. Genet. Genomics 269: 395-405 (2003).

Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G. Nitric oxide: the versatility of an extensive signal molecule. Annu. Rev. Plant Biol. 54: 109-136 (2003).

Lamberg KE, Kiley PJ. FNR-dependent activation of the class II dmsA and narG promoters of Escherichia coli requires FNR-activating regions 1 and 3. Mol. Microbiol. 38: 817-827 (2000).

Lanfaloni L, Cappanna E, Gualerzi CO. Isolation and characterization of a chlorate-resistant mutant of Spirulina platensis. New Microbiol. 17: 133-140 (1994).

Larios B, Aguera E, de la Haba P, Perez-Vicente R, Maldonado JM. A short-term exposure of cucumber plants to rising atmospheric CO2 increases leaf carbohydrate content and enhances nitrate reductase expression and activity. Planta 212: 305-312 (2001).

Laville J, Blumer C, Von Schroetter C, Gaia V, Defago G, Keel C, Haas D. Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. J. Bacteriol. 180: 3187-3196 (1998).

Lawlor DW, Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 25: 275-294 (2002).

Lea US, Leydecker MT, Quillere I, Meyer C, Lillo C. Posttranslational regulation of nitrate reductase strongly affects the levels of free amino acids and nitrate, whereas transcriptional regulation has only minor influence. Plant Physiol. 140: 1085-1094 (2006).

Lea US, Ten Hoopen F, Provan F, Kaiser WM, Meyer C, Lillo C. Mutation of the regulatory phosphorylation site of tobacco nitrate reductase results in high nitrite excretion and NO emission from leaf and root tissue. Planta 219: 59-65 (2004).

Lebrun E, Brugna M, Baymann F, Muller D, Lievremont D, Lett MC, Nitschke W. Arsenite oxidase, an ancient bioenergetic enzyme. Mol. Biol. Evol. 20: 686-693 (2003).

Lee BR, Jin YL, Avice JC, Cliquet JB, Ourry A, Kim TH. Increased proline loading to phloem and its effects on nitrogen uptake and assimilation in water-stressed white clover (Trifolium repens). New Phytol. 182: 654-663 (2009).

Lee DY, Ramos A, Macomber L, Shapleigh JP. Taxis response of various denitrifying bacteria to nitrate and nitrite. Appl. Environ. Microbiol. 68: 2140-2147 (2002).

Lee HM, Flores E, Forchhammer K, Herrero A, Tandeau De Marsac N. Phosphorylation of the signal transducer PII protein and an additional effector are required for the PII-mediated regulation of nitrate and nitrite uptake in the Cyanobacterium synechococcus sp. PCC 7942. Eur. J. Biochem. 267: 591-600 (2000).

Lee JH, Wendt JC, Shanmugam KT. Identification of a new gene, molR, essential for utilization of molybdate by Escherichia coli. J. Bacteriol. 172: 2079-2087 (1990).

Lee RW, Robinson JJ, Cavanaugh CM. Pathways of inorganic nitrogen assimilation in chemoautotrophic bacteria-marine invertebrate symbioses: expression of host and symbiont glutamine synthetase. J. Exp. Biol. 202: 289-300 (1999).

Leimkuhler S, Klipp W. The molybdenum cofactor biosynthesis protein MobA from Rhodobacter capsulatus is required for the activity of molybdenum enzymes containing MGD, but not for xanthine dehydrogenase harboring the MPT cofactor. FEMS Microbiol. Lett. 174: 239-246 (1999).

Lejay L, Quillere I, Roux Y, Tillard P, Cliquet JB, Meyer C, Morot-Gaudry JF, Gojon A. Abolition of posttranscriptional regulation of nitrate reductase partially prevents the decrease in leaf NO3- reduction when photosynthesis is inhibited by CO2 deprivation, but not in darkness. Plant Physiol. 115: 623-630 (1997).

Lejay L, Tillard P, Lepetit M, Olive Fd, Filleur S, Daniel-Vedele F, Gojon A. Molecular and functional regulation of two NO3- uptake systems by N- and C-status of Arabidopsis plants. Plant J. 18: 509-519 (1999).

Leleu O, Vuylsteker C. Unusual regulatory nitrate reductase activity in cotyledons of Brassica napus seedlings: enhancement of nitrate reductase activity by ammonium supply. J. Exp. Bot. 55: 815-823 (2004).

Lemaitre T, Gaufichon L, Boutet-Mercey S, Christ A, Masclaux-Daubresse C. Enzymatic and metabolic diagnostic of nitrogen deficiency in Arabidopsis thaliana Wassileskija accession. Plant Cell Physiol. 49: 1056-1065 (2008).

Lenouvel F, Fraissinet-Tachet L, van de Vondervoort PJ, Visser J. Isolation of UV-induced mutations in the areA nitrogen regulatory gene of Aspergillus niger, and construction of a disruption mutant. Mol. Genet. Genomics 266: 42-47 (2001).

Leopoldini M, Russo N, Toscano M, Dulak M, Wesolowski TA. Mechanism of nitrate reduction by Desulfovibrio desulfuricans nitrate reductase. A theoretical investigation. Chemistry 12: 2532-2541 (2006).

Leprinc AS, Grandbastien MA, Christian M. Retrotransposons of the Tnt1B family are mobile in Nicotiana plumbaginifolia and can induce alternative splicing of the host gene upon insertion. Plant Mol. Biol. 47: 533-541 (2001).

Levin RA, Blanton J, Miller JS. Phylogenetic utility of nuclear nitrate reductase: a multi-locus comparison of nuclear and chloroplast sequence data for inference of relationships among American Lycieae (Solanaceae). Mol. Phylogenet. Evol. 50: 608-617 (2009).

Levis C, Fortini D, Brygoo Y. Transformation of Botrytis cinerea with the nitrate reductase gene (niaD) shows a high frequency of homologous recombination. Curr. Genet. 32: 157-162 (1997).

Lexa M, Genkov T, Brzobohaty B. Inhibitory effects of elevated endogenous cytokinins on nitrate reductase in ipt-expressing tobacco are eliminated by short-term exposure to benzyladenine. Physiol. Plant. 115: 284-290 (2002).

Leydecker MT, Moureaux T, Kraepiel Y, Schnorr K, Caboche M. Molybdenum cofactor mutants, specifically impaired in xanthine dehydrogenase activity and abscisic acid biosynthesis, simultaneously overexpress nitrate reductase. Plant Physiol. 107: 1427-1431 (1995).

Li DX, Cong W, Cai ZL, Shi DJ, Ouyang F. Effect of iron stress, light stress, and nitrogen source on physiological aspects of marine red tide alga. J. Plant Nutr. 27: 29-41 (2004).

Li G, Yang Y, Jiao R. Nitrite reductase gene cloning of Amycolatopsis mediterranei U-32. Chin. J. Biotechnol. 10: 145-151 (1994).

Li H, Liang X, Chen Y, Lian Y, Tian G, Ni W. Effect of nitrification inhibitor DMPP on nitrogen leaching, nitrifying organisms, and enzyme activities in a rice-oilseed rape cropping system. J. Environ. Sci. (China) 20: 149-155 (2008).

Li J, Xue L, Yan H, Wang L, Liu L, Lu Y, Xie H. The nitrate reductase gene-switch: a system for regulated expression in transformed cells of Dunaliella salina. Gene 403: 132-142 (2007).

Li M, Wu YJ, Yu ZL, Sheng GP, Yu HQ. Enhanced nitrogen and phosphorus removal from eutrophic lake water by Ipomoea aquatica with low-energy ion implantation. Water Res. 43: 1247-1256 (2009).

Li XZ, Oaks A. Induction and turnover of nitrate reductase in Zea mays. Influence of NO3-. Plant Physiol. 102: 1251-1257 (1993).

Li XZ, Oaks A. Induction and turnover of nitrate reductase in Zea mays. Influence of light. Plant Physiol. 106: 1145-1149 (1994).

Li YL, Fan XR, Shen QR. The relationship between rhizosphere nitrification and nitrogen-use efficiency in rice plants. Plant Cell Environ. 31: 73-85 (2008).

Liao MT, Fillery IRP, Palta JA. Early vigorous growth is a major factor influencing nitrogen uptake in wheat. Funct. Plant Biol. 31: 121-129 (2004).

Lightfoot DA, Baron AJ, Cock JM, Wootton JC. A nitrate reductase gene of the cyanobacterium Synechococcus PCC6301 inferred by heterologous hybridization, cloning and targeted mutagenesis. Genetica 85: 107-117 (1992).

Lillo C. Signalling cascades integrating light-enhanced nitrate metabolism. Biochem. J. 415: 11-19 (2008).

Lillo C, Kazazaic S, Ruoff P, Meyer C. Characterization of nitrate reductase from light- and dark-exposed leaves. Comparison of different species and effects of 14-3-3 inhibitor proteins. Plant Physiol. 114: 1377-1383 (1997).

Lillo C, Lea US, Leydecker MT, Meyer C. Mutation of the regulatory phosphorylation site of tobacco nitrate reductase results in constitutive activation of the enzyme in vivo and nitrite accumulation. Plant J. 35: 566-573 (2003).

Lillo C, Meyer C, Lea US, Provan F, Oltedal S. Mechanism and importance of post-translational regulation of nitrate reductase. J. Exp. Bot. 55: 1275-1282 (2004).

Lillo C, Meyer C, Ruoff P. The nitrate reductase circadian system. The central clock dogma contra multiple oscillatory feedback loops. Plant Physiol. 125: 1554-1557 (2001).

Lillo C, Ruoff P. Hysteretic behavior of nitrate reductase. Evidence of an allosteric binding site for reduced pyridine nucleotides. J. Biol. Chem. 267: 13456-13459 (1992).

Lim BS, Willer MW, Miao M, Holm RH. Monodithiolene molybdenum(V,VI) complexes: a structural analogue of the oxidized active site of the sulfite oxidase enzyme family. J. Am. Chem. Soc. 123: 8343-8349 (2001).

Limami A, Phillipson B, Ameziane R, Pernollet N, Jiang Q, Roy R, Deleens E, Chaumont-Bonnet M, Gresshoff PM, Hirel B. Does root glutamine synthetase control plant biomass production in Lotus japonicus L.? Planta 209: 495-502 (1999).

Lin JT, Goldman BS, Stewart V. Structures of genes nasA and nasB, encoding assimilatory nitrate and nitrite reductases in Klebsiella pneumoniae M5al. J. Bacteriol. 175: 2370-2378 (1993).

Lin JT, Stewart V. Nitrate assimilation by bacteria. Adv. Microbiol. Physiol. 39: 1-30 (1998).

Lin Y, Cheng CL. A chlorate-resistant mutant defective in the regulation of nitrate reductase gene expression in Arabidopsis defines a new HY locus. Plant Cell 9: 21-35 (1997).

Lin Y, Hwang CF, Brown JB, Cheng CL. 5' Proximal regions of Arabidopsis nitrate reductase genes direct nitrate-induced transcription in transgenic tobacco. Plant Physiol. 106: 477-484 (1994).

Liu AR, Zhao KF. Effects of salt stress on the growth and the nitrate reductase activity in Thellungiella halophila. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 31: 469-476 (2005).

Liu HP, Takio S, Satoh T, Yamamoto I. Involvement in denitrification of the napKEFDABC genes encoding the periplasmic nitrate reductase system in the denitrifying phototrophic bacterium Rhodobacter sphaeroides f. sp. denitrificans. Biosci. Biotechnol. Biochem. 63: 530-536 (1999).

Liu X, DeMoss JA. Characterization of NarJ, a system-specific chaperone required for nitrate reductase biogenesis in Escherichia coli. J. Biol. Chem. 272: 24266-24271 (1997).

Liu Y, Wu R, Wan Q, Xie G, Bi Y. Glucose-6-phosphate dehydrogenase plays a pivotal role in nitric oxide-involved defense against oxidative stress under salt stress in red kidney bean roots. Plant Cell Physiol. 48: 511-522 (2007).

Llamas A, Igeno MI, Galvan A, Fernandez E. Nitrate signalling on the nitrate reductase gene promoter depends directly on the activity of the nitrate transport systems in Chlamydomonas. Plant J. 30: 261-271 (2002).

Llamas A, Kalakoutskii KL. Molybdenum cofactor amounts in Chlamydomonas reinhardtii depend on the Nit5 gene function related to molybdate transport. Plant Cell Environ. 23: 1247-1255 (2000).

Llamas I, Moral AD, Martinez-Checa F, Arco Y, Arias S, Quesada E. Halomonas maura is a physiologically versatile bacterium of both ecological and biotechnological interest. Antonie. Van. Leeuwenhoek. 89: 395-403 (2006).

Lledo B, Marhuenda-Egea FC, Martinez-Espinosa RM, Bonete MJ. Identification and transcriptional analysis of nitrate assimilation genes in the halophilic archaeon Haloferax mediterranei. Gene 361: 80-88 (2005).

Llorens N, Arola L, Blade C, Mas A. Effects of copper exposure upon nitrogen metabolism in tissue cultured Vitis vinifera. Plant Sci. 160: 159-163 (2000).

Lobo SA, Almeida CC, Carita JN, Teixeira M, Saraiva LM. The haem-copper oxygen reductase of Desulfovibrio vulgaris contains a dihaem cytochrome c in subunit II. Biochim. Biophys. Acta 1777: 1528-1534 (2008).

Lomas MW. Nitrate reductase and urease enzyme activity in the marine diatom Thalassiosira weissflogii (Bacillariophyceae): interactions among nitrogen substrates. Mar. Biol. 144: 37-44 (2004).

Lopes MS, Araus JL. Comparative genomic and physiological analysis of nutrient response to NH4+, NH4+:NO3- and NO3- in barley seedlings. Physiol. Plant. 134: 134-150 (2008).

Lopes PF, de Cabral Oliveira M, Colepicolo P. Characterization and daily variation of nitrate reductase in Gracilaria tenuistipitata (Rhodophyta). Biochem. Biophys. Res. Commun. 295: 50-54 (2002).

Loppes R, Radoux M. Identification of short promoter regions involved in the transcriptional expression of the nitrate reductase gene in Chlamydomonas reinhardtii. Plant Mol. Biol. 45: 215-227 (2001).

Loppes R, Radoux M. Two short regions of the promoter are essential for activation and repression of the nitrate reductase gene in Chlamydomonas reinhardtii. Mol. Genet. Genomics 268: 42-48 (2002).

Loppes R, Radoux M, Ohresser MC, Matagne RF. Transcriptional regulation of the Nia1 gene encoding nitrate reductase in Chlamydomonas reinhardtii: effects of various environmental factors on the expression of a reporter gene under the control of the Nia1 promoter. Plant Mol. Biol. 41: 701-711 (1999).

Loque D, Tillard P, Gojon A, Lepetit M. Gene expression of the NO3- transporter NRT1.1 and the nitrate reductase NIA1 is repressed in Arabidopsis roots by NO2-, the product of NO3- reduction. Plant Physiol. 132: 958-967 (2003).

Loros JJ, Dunlap JC, Larrondo LF, Shi M, Belden WJ, Gooch VD, Chen CH, Baker CL, Mehra A, Colot HV, Schwerdtfeger C, Lambreghts R, Collopy PD, Gamsby JJ, Hong CI. Circadian output, input, and intracellular oscillators: insights into the circadian systems of single cells. Cold Spring Harb. Symp. Quant. Biol. 72: 201-214 (2007).

Lu G, Campbell W, Lindqvist Y, Schneider G. Crystallization and preliminary crystallographic studies of the FAD domain of corn NADH: nitrate reductase. J. Mol. Biol. 224: 277-279 (1992).

Lu G, Campbell WH, Schneider G, Lindqvist Y. Crystal structure of the FAD-containing fragment of corn nitrate reductase at 2.5 A resolution: relationship to other flavoprotein reductases. Structure 2: 809-821 (1994).

Lu G, Lindqvist Y, Schneider G, Dwivedi U, Campbell W. Structural studies on corn nitrate reductase: refined structure of the cytochrome b reductase fragment at 2.5 A, its ADP complex and an active-site mutant and modeling of the cytochrome b domain. J. Mol. Biol. 248: 931-948 (1995).

Lu JL, Ertl JR, Chen CM. Cytokinin enhancement of the light induction of nitrate reductase transcript levels in etiolated barley leaves. Plant Mol. Biol. 14: 585-594 (1990).

Lubitz SP, Weiner JH. The Escherichia coli ynfEFGHI operon encodes polypeptides which are paralogues of dimethyl sulfoxide reductase (DmsABC). Arch. Biochem. Biophys. 418: 205-216 (2003).

Lucinski R, Polcyn W, Ratajczak L. Nitrate reduction and nitrogen fixation in symbiotic association Rhizobium-legumes. Acta Biochim. Pol. 49: 537-546 (2002).

Lukat P, Rudolf M, Stach P, Messerschmidt A, Kroneck PM, Simon J, Einsle O. Binding and reduction of sulfite by cytochrome c nitrite reductase. Biochemistry 47: 2080-2086 (2008).

Luna CM, Casano LM, Trippi VS. Inhibition of wheat nitrate reductase activity by zinc. Biol. Plant. 43: 257-262 (2000).

Luque I, Herrero A, Flores E, Madueno F. Clustering of genes involved in nitrate assimilation in the cyanobacterium Synechococcus. Mol. Gen. Genet. 232: 7-11 (1992).

Luque-Almagro VM, Blasco R, Saez LP, Roldan MD, Moreno-Vivian C, Castillo F, Martinez-Luque M. Interactions between nitrate assimilation and 2,4-dinitrophenol cometabolism in Rhodobacter capsulatus E1F1. Curr. Microbiol. 53: 37-42 (2006).

Maaroufi Dguimi H, Debouba M, Ghorbel MH, Gouia H. Tissue-specific cadmium accumulation and its effects on nitrogen metabolism in tobacco (Nicotiana tabaccum, Bureley v. Fb9). C. R. Biol. 332: 58-68 (2009).

Macaluso A, Best EA, Bender RA. Role of the nac gene product in the nitrogen regulation of some NTR-regulated operons of Klebsiella aerogenes. J. Bacteriol. 172: 7249-7255 (1990).

Machin F, Medina B, Navarro FJ, Perez MD, Veenhuis M, Tejera P, Lorenzo H, Lancha A, Siverio JM. The role of Ynt1 in nitrate and nitrite transport in the yeast Hansenula polymorpha. Yeast 21: 265-276 (2004).

Machin F, Perdomo G, Perez MD, Brito N, Siverio JM. Evidence for multiple nitrate uptake systems in the yeast Hansenula polymorpha. FEMS Microbiol. Lett. 194: 171-174 (2001).

Mack G, Schjoerring JK. Effect of NO3- supply on N metabolism of potato plants (Solanum tuberosum L.) with special focus on the tubers. Plant Cell Environ. 25: 999-1009 (2002).

MacKintosh C. Regulation of spinach-leaf nitrate reductase by reversible phosphorylation. Biochim. Biophys. Acta 1137: 121-126 (1992).

Mackintosh C, Douglas P, Lillo C. Identification of a protein that inhibits the phosphorylated form of nitrate reductase from spinach (Spinacia oleracea) leaves. Plant Physiol. 107: 451-457 (1995).

MacKintosh C, Meek SE. Regulation of plant NR activity by reversible phosphorylation, 14-3-3 proteins and proteolysis. Cell Mol. Life Sci. 58: 205-214 (2001).

MacKown CT, Weik JC. Comparison of laboratory and quick-test methods for forage nitrate. Crop Sci. 44: 218-226 (2004).

Maeda S, Omata T. A novel gene (narM) required for expression of nitrate reductase activity in the cyanobacterium Synechococcus elongatus strain PCC7942. J. Bacteriol. 186: 2107-2114 (2004).

Maevskaya SN, Egorova EA, Bukhov NG. Effect of elevated temperature on nitrite and nitrate reduction in leaves and intact chloroplasts. Russ. J. Plant Physiol. 50: 599-603 (2003).

Magalon A, Asso M, Guigliarelli B, Rothery RA, Bertrand P, Giordano G, Blasco F. Molybdenum cofactor properties and [Fe-S] cluster coordination in Escherichia coli nitrate reductase A: investigation by site-directed mutagenesis of the conserved his-50 residue in the NarG subunit. Biochemistry 37: 7363-7370 (1998).

Magalon A, Rothery RA, Lemesle-Meunier D, Frixon C, Weiner JH, Blasco F. Inhibitor binding within the NarI subunit (cytochrome bnr) of Escherichia coli nitrate reductase A. J. Biol. Chem. 273: 10851-10856 (1998).

Main KM, Barber MJ. Mutagenesis of a conserved nucleotide-binding domain in nitrate reductase. FASEB J. 14: 600 (2000).

Majerowicz N, Kerbauy GB. Effects of nitrogen forms on dry matter partitioning and nitrogen metabolism in two contrasting genotypes of Catasetum fimbriatum (Orchidaceae). Environ. Exp. Bot. 47: 249-258 (2002).

Majerowicz N, Kerbauy GB, Nievola CC, Suzuki RM. Growth and nitrogen metabolism of Catasetum fimbriatum (Orchidaceae) grown with different nitrogen sources. Environ. Exp. Bot. 44: 195-206 (2000).

Malardier L, Daboussi MJ, Julien J, Roussel F, Scazzocchio C, Brygoo Y. Cloning of the nitrate reductase gene (niaD) of Aspergillus nidulans and its use for transformation of Fusarium oxysporum. Gene 78: 147-156 (1989).

Malavolta E, Nogueira NGL, Heinrichs R, Higashi EN, Rodriguez V, Guerra E, de Oliveira SC, Cabral CP. Evaluation of nutritional status of the cotton plant with respect to nitrogen. Commun. Soil Sci. Plant Anal. 35: 1007-1019 (2004).

Mallick N, Rai LC. Impact of spectral quality on toxicity of iron in Anabaena doliolum and Chlorella vulgaris. Biomed. Environ. Sci. 5: 65-75 (1992).

Mallick N, Singh AK, Rai LC. Impact of bimetallic combinations of Cu, Ni and Fe on growth rate, uptake of nitrate and ammonium, 14CO2 fixation, nitrate reductase and urease activity of Chlorella vulgaris. Biol. Met. 2: 223-228 (1990).

Malm S, Tiffert Y, Micklinghoff J, Schultze S, Joost I, Weber I, Horst S, Ackermann B, Schmidt M, Wohlleben W, Ehlers S, Geffers R, Reuther J, Bange FC. The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis. Microbiology 155: 1332-1339 (2009).

Malolepsza U. Nitric oxide production in plants. Postepy. Biochem. 53: 263-271 (2007).

Malone AS, Chung YK, Yousef AE. Genes of Escherichia coli O157:H7 that are involved in high-pressure resistance. Appl. Environ. Microbiol. 72: 2661-2671 (2006).

Man HM, Abd-El Baki GK, Stegmann P, Weiner H, Kaiser WM. The activation state of nitrate reductase is not always correlated with total nitrate reductase activity in leaves. Planta 209: 462-468 (1999).

Man HM, Kaiser WM. Increased glutamine synthetase activity and changes in amino acid pools in leaves treated with 5-aminoimidazole-4-carboxiamide ribonucleoside (AICAR). Physiol. Plant. 111: 291-296 (2001).

Marietou A, Richardson D, Cole J, Mohan S. Nitrate reduction by Desulfovibrio desulfuricans: a periplasmic nitrate reductase system that lacks NapB, but includes a unique tetraheme c-type cytochrome, NapM. FEMS Microbiol. Lett. 248: 217-225 (2005).

Mariscal V, Rexach J, Fernandez E, Galvan A. The plastidic nitrite transporter NAR1;1 improves nitrate use efficiency for growth in Chlamydomonas. Plant Cell Environ. 27: 1321-1328 (2004).

Marohnic CC, Bewley MC, Barber MJ. Engineering and characterization of a NADPH-utilizing cytochrome b(5) reductase. Biochemistry 42: 11170-11182 (2003).

Martin DE, Reinhold-Hurek B. Distinct roles of PII-like signal transmitter proteins and amtB in regulation of nif gene expression, nitrogenase activity, and posttranslational modification of NifH in Azoarcus sp strain BH72. J. Bacteriol. 184: 2251-2259 (2002).

Martinez-Espinosa RM, Lledo B, Marhuenda-Egea FC, Bonete MJ. The effect of ammonium on assimilatory nitrate reduction in the haloarchaeon Haloferax mediterranei. Extremophiles 11: 759-767 (2007).

Martinez-Espinosa RM, Marhuenda-Egea FC, Bonete MJ. Assimilatory nitrate reductase from the haloarchaeon Haloferax mediterranei: purification and characterisation. FEMS Microbiol. Lett. 204: 381-385 (2001).

Martinez-Espinosa RM, Richardson DJ, Butt JN, Bonete MJ. Respiratory nitrate and nitrite pathway in the denitrifier haloarchaeon Haloferax mediterranei. Biochem. Soc. Trans. 34: 115-117 (2006).

Marton L, Hrouda M, Pecsvaradi A, Czako M. T-DNA-insert-independent mutations induced in transformed plant cells during Agrobacterium co-cultivation. Transgenic Res. 3: 317-325 (1994).

Masclaux-Daubresse C, Carrayol E, Valadier MH. The two nitrogen mobilisation- and senescence-associated GS1 and GDH genes are controlled by C and N metabolites. Planta 221: 580-588 (2005).

Masclaux-Daubresse C, Valadier MH, Carrayol E, Reisdorf-Cren M, Hirel B. Diurnal changes in the expression of glutamate dehydrogenase and nitrate reductase are involved in the C/N balance of tobacco source leaves. Plant Cell Environ. 25: 1451-1462 (2002).

Matsumura T, Sakakibara H, Nakano R, Kimata Y, Sugiyama T, Hase T. A nitrate-inducible ferredoxin in maize roots. Genomic organization and differential expression of two nonphotosynthetic ferredoxin isoproteins. Plant Physiol. 114: 653-660 (1997).

Matt P, Geiger M, Walch-Liu P, Engels C, Krapp A, Stitt M. The immediate cause of the diurnal changes of nitrogen metabolism in leaves of nitrate-replete tobacco: a major imbalance… Plant Cell Environ. 24: 177-190 (2001).

Matt P, Krapp A, Haake V, Mock HP, Stitt M. Decreased Rubisco activity leads to dramatic changes of nitrate metabolism, amino acid metabolism and the levels of phenylpropanoids and nicotine in tobacco antisense RBCS transformants. Plant J. 30: 663-677 (2002).

Matt P, Schurr U, Klein D, Krapp A, Stitt M. Growth of tobacco in short-day conditions leads to high starch, low sugars, altered diurnal changes in the Nia transcript and low nitrate reductase activity, and inhibition of amino acid synthesis. Planta 207: 27-41 (1998).

Mattana M, Coraggio I, Bertani A, Reggiani R. Expression of the enzymes of nitrate reduction during the anaerobic germination of rice. Plant Physiol. 106: 1605-1608 (1994).

Mattana M, Ida S, Reggiani R. The root form of ferredoxin-NADP(+) oxidoreductase is expressed in rice coleoptiles for the assimilation of nitrate. Planta 202: 397-401 (1997).

Maurer P, Rejasse A, Capy P, Langin T, Riba G. Isolation of the transposable element hupfer from the entomopathogenic fungus Beauveria bassiana by insertion mutagenesis of the nitrate reductase structural gene. Mol. Gen. Genet. 256: 195-202 (1997).

Mazoch J, Kunak M, Kucera I, van Spanning RJM. Fine-tuned regulation by oxygen and nitric oxide of the activity of a semi- synthetic FNR-dependent promoter and expression of denitrification enzymes in Paracoccus denitrificans. Microbiology (U.K.) 149: 3405-3412 (2003).

McArthur D, Knowles NR. Influence of vesicular-arbuscular mycorrhizal fungi on the response of potato to phosphorus deficiency. Plant Physiol. 101: 147-160 (1993).

McCallum JA, Pither-Joyce M, Shaw M. Sulfur deprivation and genotype affect gene expression and metabolism of onion roots. J. Am. Soc. Hortic. Sci. 127: 583-589 (2002).

McDevitt CA, Hanson GR, Noble CJ, Cheesman MR, McEwan AG. Characterization of the redox centers in dimethyl sulfide dehydrogenase from Rhodovulum sulfidophilum. Biochemistry 41: 15234-15244 (2002).

McMichael RW Jr, Bachmann M, Huber SC. Spinach leaf sucrose-phosphate synthase and nitrate reductase are phosphorylated/inactivated by multiple protein kinases in vitro. Plant Physiol. 108: 1077-1082 (1995).

McNally N, Liu XY, Choudary PV. A high-throughput assay format for determination of nitrate reductase and nitrite reductase enzyme activities. Appl. Biochem. Biotechnol. 62: 29-36 (1997).

McNicholas PM, Gunsalus RP. The molybdate-responsive Escherichia coli ModE transcriptional regulator coordinates periplasmic nitrate reductase (napFDAGHBC) operon expression with nitrate and molybdate availability. J. Bacteriol. 184: 3253-3259 (2002).

Mekonnen AE, Prasanna R, Kaushik BD. Cyanobacterial N2 fixation in presence of nitrogen fertilizers. Indian J. Exp. Biol. 40: 854-857 (2002).

Mekonnen AE, Prasanna R, Kaushik BD. Response of Anabaena species to different nitrogen sources. Acta Biol. Hung. 53: 367-380 (2002).

Mendel RR. Biology of the molybdenum cofactor. J. Exp. Bot. 58: 2289-2296 (2007).

Mendel RR, Bittner F. Cell biology of molybdenum. Biochim. Biophys. Acta 1763: 621-635 (2006).

Mendel RR, Hansch R. Molybdoenzymes and molybdenum cofactor in plants. J. Exp. Bot. 53: 1689-1698 (2002).

Mendel RR, Schwarz G. Biosynthesis and molecular biology of the molybdenum cofactor (Moco). Met. Ions Biol. Syst. 39: 317-368 (2002).

Merchan F, Kindle KL, Llama MJ, Serra JL, Fernandez E. Cloning and sequencing of the nitrate transport system from the thermophilic, filamentous cyanobacterium Phormidium laminosum: comparative analysis with the homologous system from Synechococcus sp. PCC 7942. Plant Mol. Biol. 28: 759-766 (1995).

Mertens JA, Shiraishi N, Campbell WH. Recombinant expression of molybdenum reductase fragments of plant nitrate reductase at high levels in Pichia pastoris. Plant Physiol. 123: 743-756 (2000).

Mesa S, Alche JD, Bedmar EJ, Delgado MJ. Expression of nir, nor and nos denitrification genes from Bradyrhizobium japonicum in soybean root nodules. Physiol. Plant. 120: 205-211 (2004).

Mesa S, Ucurum Z, Hennecke H, Fischer HM. Transcription activation in vitro by the Bradyrhizobium japonicum regulatory protein FixK2. J. Bacteriol. 187: 3329-3338 (2005).

Metheringham R, Tyson KL, Crooke H, Missiakas D, Raina S, Cole JA. Effects of mutations in genes for proteins involved in disulphide bond formation in the periplasm on the activities of anaerobically induced electron transfer chains in Escherichia coli K12. Mol. Gen. Genet. 253: 95-102 (1996).

Meyer A, Sedlacek L, Bange FC. Rapid testing for nitrate reductase activity of Mycobacterium tuberculosis grown in an aAutomated culture system. Eur. J. Clin. Microbiol. Infect. Dis. 22: 444-446 (2003).

Meyer C, Gonneau M, Caboche M, Rouze P. Identification by mutational analysis of four critical residues in the molybdenum cofactor domain of eukaryotic nitrate reductase. FEBS Lett. 370: 197-202 (1995).

Meyer C, Lea US, Provan F, Kaiser WM, Lillo C. Is nitrate reductase a major player in the plant NO (nitric oxide) game? Photosynth. Res. 83: 181-189 (2005).

Meyer C, Levin JM, Roussel JM, Rouze P. Mutational and structural analysis of the nitrate reductase heme domain of Nicotiana plumbaginifolia. J. Biol. Chem. 266: 20561-20566 (1991).

Meyer C, Pouteau S, Rouze P, Caboche M. Isolation and molecular characterization of dTnp1, a mobile and defective transposable element of Nicotiana plumbaginifolia. Mol. Gen. Genet. 242: 194-200 (1994).

Meyerhoff PA, Fox TC, Travis RL, Huffaker RC. Characterization of the association of nitrate reductase with barley (Hordeum vulgare L.) root membranes. Plant Physiol. 104: 925-936 (1994).

Migge A, Bork C, Hell R, Becker TW. Negative regulation of nitrate reductase gene expression by glutamine or asparagine accumulating in leaves of sulfur-deprived tobacco. Planta 211: 587-595 (2000).

Migheli Q, Lauge R, Daviere JM, Gerlinger C, Kaper F, Langin T, Daboussi MJ. Transposition of the autonomous Fot1 element in the filamentous fungus Fusarium oxysporum. Genetics 151: 1005-1013 (1999).

Migheli Q, Steinberg C, Daviere JM, Olivain C, Gerlinger C, Gautheron N, Alabouvette C, Daboussi MJ. Recovery of mutants impaired in pathogenicity after transposition of impala in Fusarium oxysporum f. sp. melonis. Phytopathology 90: 1279-1284 (2000).

Mihlan M, Homann V, Liu TW, Tudzynski B. AREA directly mediates nitrogen regulation of gibberellin biosynthesis in Gibberella fujikuroi, but its activity is not affected by NMR. Mol. Microbiol. 47: 975-991 (2003).

Miller AE, Bowman WD. Variation in nitrogen-15 natural abundance and nitrogen uptake traits among co-occurring alpine species: do species partition by nitrogen form?. Oecologia 130: 609-616 (2002).

Miller AJ, Fan X, Shen Q, Smith SJ. Amino acids and nitrate as signals for the regulation of nitrogen acquisition. J. Exp. Bot. 59: 111-119 (2008).

Miller SM, Schmitt R, Kirk DL. Jordan, an active Volvox transposable element similar to higher plant transposons. Plant Cell 5: 1125-1138 (1993).

Miller SR, Castenholz RW. Ecological physiology of Synechococcus sp. strain SH-94-5, a naturally occurring cyanobacterium deficient in nitrate assimilation. Appl. Environ. Microbiol. 67: 3002-3009 (2001).

Min X, Siddiqi MY, Guy RD, Glass ADM, Kronzucker HJ. Induction of nitrate uptake and nitrate reductase activity in trembling aspen and lodgepole pine. Plant Cell Environ. 21: 1039-1046 (1998).

Minagawa N, Yoshimoto A. Purification and characterization of the assimilatory NADPH-nitrate reductase of Aspergillus nidulans. J. Biochem. (Tokyo) 91: 761-774 (1982).

Minneci PC, Deans KJ, Shiva S, Zhi H, Banks SM, Kearns S, Natanson C, Solomon SB, Gladwin MT. Nitrite reductase activity of hemoglobin as a systemic nitric oxide generator mechanism to detoxify plasma hemoglobin produced during hemolysis. Am. J. Physiol. Heart Circ. Physiol. 295: H743-H454 (2008).

Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5: 62-71 (2001).

Mishra KK, Rai UN, Prakash O. Bioconcentration and phytotoxicity of Cd in Eichhornia crassipes. Environ. Monit. Assess. 130: 237-243 (2007).

Miyazaki J, Juricek M, Angelis K, Schnorr KM, Kleinhofs A, Warner RL. Characterization and sequence of a novel nitrate reductase from barley. Mol. Gen. Genet. 228: 329-334 (1991).

Mo X, Marzluf GA. Cooperative action of the NIT2 and NIT4 transcription factors upon gene expression in Neurospora crassa. Curr. Genet. 42: 260-267 (2003).

Modolo LV, Augusto O, Almeida IM, Magalhaes JR, Salgado I. Nitrite as the major source of nitric oxide production by Arabidopsis thaliana in response to Pseudomonas syringae. FEBS Lett. 579: 3814-3920 (2005).

Moir JW, Wood NJ. Nitrate and nitrite transport in bacteria. Cell Mol. Life Sci. 58: 215-224 (2001).

Molina-Favero C, Creus CM, Simontacchi M, Puntarulo S, Lamattina L. Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol. Plant Microbe Interact. 21: 1001-1009 (2008).

Montanini B, Viscomi AR, Bolchi A, Martin Y, Siverio JM, Balestrini R, Bonfante P, Ottonello S. Functional properties and differential mode of regulation of the nitrate transporter from a plant symbiotic ascomycete. Biochem. J. 394: 125-134 (2006).

Moorhead G, Douglas P, Cotelle V, Harthill J, Morrice N, Meek S, Deiting U, Stitt M, Scarabel M, Aitken A, MacKintosh C. Phosphorylation-dependent interactions between enzymes of plant metabolism and 14-3-3 proteins. Plant J. 18: 1-12 (1999).

Moorhead G, Douglas P, Morrice N, Scarabel M, Aitken A, MacKintosh C. Phosphorylated nitrate reductase from spinach leaves is inhibited by 14-3-3 proteins and activated by fusicoccin. Curr. Biol. 6: 1104-1113 (1996).

Moorhead GB, Meek SE, Douglas P, Bridges D, Smith CS, Morrice N, MacKintosh C. Purification of a plant nucleotide pyrophosphatase as a protein that interferes with nitrate reductase and glutamine synthetase assays. Eur. J. Biochem. 270: 1356-1362 (2003).

Mora C, Witt FG, Aparicio PJ, Quinones MA. Independent induction of two blue light-dependent monovalent anion transport systems in the plasma membrane of Monoraphidium braunii. J. Exp. Bot. 53: 1909-1918 (2002).

Morard P, Lacoste L, Silvestre J. Effect of oxygen deficiency on mineral nutrition of excised tomato roots. J. Plant Nutr. 27: 613-626 (2004).

Morard P, Silvestre J, Lacoste L, Caumes E, Lamaze T. Nitrate uptake and nitrite release by tomato roots in response to anoxia. J. Plant Physiol. 161: 855-865 (2004).

Morcuende R, Kostadinova S, Perez P, del Molino IMM, Martinez-Carrasco R. Nitrate is a negative signal for fructan synthesis, and the fructosyltransferase-inducing trehalose inhibits nitrogen and carbon assimilation in excised barley leaves. New Phytol. 161: 749-759 (2004).

Moreno R, Zafra O, Cava F, Berenguer J. Development of a gene expression vector for Thermus thermophilus based on the promoter of the respiratory nitrate reductase. Plasmid 49: 2-8 (2003).

Morikawa H, Takahashi M, Sakamoto A, Ueda-Hashimoto M, Matsubara T, Miyawaki K, Kawamura Y, Hirata T, Suzuki H. Novel metabolism of nitrogen in plants. Z. Naturforsch. [C] 60: 265-271 (2005).

Morot-Gaudry-Talarmain Y, Rockel P, Moureaux T, Quillere I I, Leydecker MT, Kaiser WM, Morot-Gaudry JF. Nitrite accumulation and nitric oxide emission in relation to cellular signaling in nitrite reductase antisense tobacco. Planta 215: 708-715 (2002).

Morozkina EV, Nosikov AN, Zvyagilskaya RA, L'vov NP. Isolation, purification, and characterization of nitrate reductase from a salt-tolerant Rhodotorula glutinis yeast strain grown in the presence of tungsten. Biochemistry (Mosc.) 70: 809-814 (2005).

Morozkina EV, Zvyagilskaya RA. Nitrate reductases: structure, functions, and effect of stress factors. Biochemistry (Mosc.) 72: 1151-1160 (2007).

Morozov IY, Galbis-Martinez M, Jones MG, Caddick MX. Characterization of nitrogen metabolite signalling in Aspergillus via the regulated degradation of areA mRNA. Mol. Microbiol. 42: 269-277 (2001).

Mosulen S, Dominguez MJ, Vigara J, Vilchez C, Guiraum A, Vega JM. Metal toxicity in Chlamydomonas reinhardtii. Effect on sulfate and nitrate assimilation. Biomol. Eng. 20: 199-203 (2003).

Mouncey NJ, Mitchenall LA, Pau RN. Mutational analysis of genes of the mod locus involved in molybdenum transport, homeostasis, and processing in Azotobacter vinelandii. J. Bacteriol. 177: 5294-5302 (1995).

Moura JJ, Brondino CD, Trincao J, Romao MJ. Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases. J. Biol. Inorg. Chem. 9: 791-799 (2004).

Moureaux T, Leydecker MT, Meyer C. Purification of nitrate reductase from Nicotiana plumbaginifolia by affinity chromatography using 5'AMP-sepharose and monoclonal antibodies. Eur. J. Biochem. 179: 617-620 (1989).

Muller C, Scheible WR, Stitt M, Krapp A. Influence of malate and 2-oxoglutarate on the NIA transcript level and nitrate reductase activity in tobacco leaves. Plant Cell Environ. 24: 191-203 (2001).

Muller V, Imkamp F, Biegel E, Schmidt S, Dilling S. Discovery of a ferredoxin:NAD+-oxidoreductase (Rnf) in Acetobacterium woodii: a novel potential coupling site in acetogens. Ann. N. Y. Acad. Sci. 1125: 137-146 (2008).

Munoz-Centeno MC, Pecina A, Cejudo FJ, Paneque A. A sensor protein involved in induction of nitrate assimilation in Azotobacter chroococcum. FEBS Lett. 393: 7-12 (1996).

Munoz-Fuentes RM, Vargas F, Bobadilla NA. Assay validation for determining nitrites and nitrates in biological fluids. Rev. Invest. Clin. 55: 670-676 (2003).

Murchie EH, Ferrario-Mery S, Valadier MH, Foyer CH. Short-term nitrogen-induced modulation of phosphoenolpyruvate carboxylase in tobacco and maize leaves. J. Exp. Bot. 51: 1349-1356 (2000).

Muro-Pastor MI, Strauss J, Ramon A, Scazzocchio C. A paradoxical mutant GATA factor. Eukaryot. Cell 3: 393-405 (2004).

Murphy TM, Vu H, Nguyen T. The superoxide synthases of rose cells. Comparison of assays. Plant Physiol. 117: 1301-1305 (1998).

Murray RE, Knowles R. Chloramphenicol inhibition of denitrifying enzyme activity in two agricultural soils. Appl. Environ. Microbiol. 65: 3487-3492 (1999).

Muthuchelian K, Meenakshi V, Nedunchezhian N. Protective effect of triacontanol against acidic mists in Samanea saman (Jacq.) Merrill seedlings: Differential responses in growth, (CO2)-C-14 fixation, ribulose-1,5-bisphosphate carboxylase, and electron transport activities. Photosynthetica 41: 335-341 (2003).

Muthuchelian K, Velayutham M, Nedunchezhian N. Ameliorating effect of triacontanol on acidic mist-treated Erythrina variegata seedlings: changes in growth and photosynthetic activities. Plant Sci. 165: 1253-1259 (2003).

Najmudin S, Gonzalez PJ, Trincao J, Coelho C, Mukhopadhyay A, Cerqueira NM, Romao CC, Moura I, Moura JJ, Brondino CD, Romao MJ. Periplasmic nitrate reductase revisited: a sulfur atom completes the sixth coordination of the catalytic molybdenum. J. Biol. Inorg. Chem. 13: 737-753 (2008).

Nakamura K, Shiraishi N, Hosoo S, Sueyoshi K, Sugimoto T, Nanmori T, Nakagawa H, Oji Y. A protein kinase activated by darkness phosphorylates nitrate reductase in Komatsuna (Brassica campestris) leaves. Physiol. Plant. 115: 496-503 (2002).

Nakano MM, Dailly YP, Zuber P, Clark DP. Characterization of anaerobic fermentative growth of Bacillus subtilis: identification of fermentation end products and genes required for growth. J. Bacteriol. 179: 6749-6755 (1997).

Nakano MM, Hoffmann T, Zhu Y, Jahn D. Nitrogen and oxygen regulation of Bacillus subtilis nasDEF encoding NADH-dependent nitrite reductase by TnrA and ResDE. J. Bacteriol. 180: 5344-5350 (1998).

Nakano MM, Hulett FM. Adaptation of Bacillus subtilis to oxygen limitation. FEMS Microbiol. Lett. 157: 1-7 (1997).

Nakano MM, Zuber P. Anaerobic growth of a "strict aerobe". Annu. Rev. Microbiol. 52: 165-190 (1998).

Narendja F, Goller SP, Wolschek M, Strauss J. Nitrate and the GATA factor AreA are necessary for in vivo binding of NirA, the pathway-specific transcriptional activator of Aspergillus nidulans. Mol. Microbiol. 44: 573-583 (2002).

Navarro FJ, Perdomo G, Tejera P, Medina B, Machin H, Guillen RM, Lancha A, Siverio JM. The role of nitrate reductase in the regulation of the nitrate assimilation pathway in the yeast Hansenula polymorpha. FEMS Yeast Res. 4: 149-155 (2003).

Navarro MT, Guerra E, Fernandez E, Galvan A. Nitrite reductase mutants as an approach to understanding nitrate assimilation in Chlamydomonas reinhardtii. Plant Physiol. 122: 283-290 (2000).

Navarro MT, Mariscal V, Macias MI, Fernandez E, Galvan A. Chlamydomonas reinhardtii strains expressing nitrate reductase under control of the cabII-1 promoter: isolation of chlorate resistant mutants and identification of new loci for nitrate assimilation. Photosynth. Res. 83: 151-161 (2005).

Neame PJ, Barber MJ. Conserved domains in molybdenum hydroxylases. The amino acid sequence of chicken hepatic sulfite oxidase. J. Biol. Chem. 264: 20894-20901 (1989).

Neelu, Kumar M, Tomar M, Bhatnagar AK. Influence of cadmium on growth and development of Vicia faba Linn. Indian J. Exp. Biol. 38: 819-823 (2000).

Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I. Nitric oxide, stomatal closure, and abiotic stress. J. Exp. Bot. 59: 165-176 (2008).

Neill S, Bright J, Desikan R, Hancock J, Harrison J, Wilson I. Nitric oxide evolution and perception. J. Exp. Bot. 59: 25-35 (2008).

Neininger A, Seith B, Hoch B, Mohr H. Gene expression of nitrite reductase in Scots pine (Pinus sylvestris L.) as affected by light and nitrate. Plant Mol. Biol. 25: 449-457 (1994).

Nelson JA, Savereide PB, Lefebvre PA. The CRY1 gene in Chlamydomonas reinhardtii: structure and use as a dominant selectable marker for nuclear transformation. Mol. Cell Biol. 14: 4011-4019 (1994).

Nemergut DR, Schmidt SK. Disruption of narH, narJ, and moaE inhibits heterotrophic nitrification in Pseudomonas strain M19. Appl. Environ. Microbiol. 68: 6462-6465 (2002).

Neubauer H, Gotz F. Physiology and interaction of nitrate and nitrite reduction in Staphylococcus carnosus. J. Bacteriol. 178: 2005-2009 (1996).

Neubauer H, Pantel I, Gotz F. Characterization of moeB--part of the molybdenum cofactor biosynthesis gene cluster in Staphylococcus carnosus. FEMS Microbiol. Lett. 164: 55-62 (1998).

Nikolopoulos D, Manetas Y. Compatible solutes and in vitro stability of Salsola soda enzymes: proline incompatibility. Phytochemistry 30: 411-413 (1991).

Nilavongse A, Brondijk TH, Overton TW, Richardson DJ, Leach ER, Cole JA. The NapF protein of the Escherichia coli periplasmic nitrate reductase system: demonstration of a cytoplasmic location and interaction with the catalytic subunit, NapA. Microbiology 152: 3227-3237 (2006).

Nishida H, Inaka K, Miki K. Specific arrangement of three amino acid residues for flavin-binding barrel structures in NADH-cytochrome b5 reductase and the other flavin-dependent reductases. FEBS Lett. 361: 97-100 (1995).

Nishimura T, Teramoto H, Vertes AA, Inui M, Yukawa H. ArnR, a novel transcriptional regulator, represses expression of the narKGHJI operon in Corynebacterium glutamicum. J. Bacteriol. 190: 3264-3273 (2008).

Nivinskas H, Sarlauskas J, Anusevicius Z, Toogood HS, Scrutton NS, Cenas N. Reduction of aliphatic nitroesters and N-nitramines by Enterobacter cloacae PB2 pentaerythritol tetranitrate reductase. FEBS J. 275: 6192-6203 (2008).

Nobuyasu H, Liu S, Adu-Gyamfi JJ, Mohapatra PK, Fujita K. Variation in the export of C-13 and N-15 from soybean leaf: the effects of nitrogen application and sink removal. Plant Soil 253: 331-339 (2003).

Noctor G, Arisi ACM, Jouanin L, Valadier MH, Roux Y, Foyer CH. Light-dependent modulation of foliar glutathione synthesis and associated amino acid metabolism in poplar overexpressing gamma-glutamylcysteine synthetase. Planta 202: 357-369 (1997).

Noriega C, Hassett DJ, Rowe JJ. The mobA gene is required for assimilatory and respiratory nitrate reduction but not xanthine dehydrogenase activity in Pseudomonas aeruginosa. Curr. Microbiol. 51: 419-424 (2005).

Nosikov AN, Chichikalo EV, Golubeva LI, Zvyagilskaya RA, L'vov NP. Stimulation of nitrate reductase activity of the salt-tolerant yeast Rhodotorula glutinis by tungsten in the presence of molybdenum. Biochemistry (Mosc.) 65: 204-207 (2000).

Novitskaya L, Trevanion SJ, Driscoll S, Foyer CH, Noctor G. How does photorespiration modulate leaf amino acid contents? A dual approach through modelling and metabolite analysis. Plant Cell Environ. 25: 821-835 (2002).

Nussaume L, Vincentz M, Meyer C, Boutin JP, Caboche M. Post-transcriptional regulation of nitrate reductase by light is abolished by an N-terminal deletion. Plant Cell 7: 611-621 (1995).

Nussbaum S, von Ballmoos P, Gfeller H, Schlunegger UP, Fuhrer J, Rhodes D, Brunold C. Incorporation of atmospheric 15NO2-nitrogen into free amino acids by Norway spruce Pice abies (L.) Karst. Oecologia 94: 408-414 (1993).

Nygren CM, Eberhardt U, Karlsson M, Parrent JL, Lindahl BD, Taylor AF. Growth on nitrate and occurrence of nitrate reductase-encoding genes in a phylogenetically diverse range of ectomycorrhizal fungi. New. Phytol. 180: 875-889 (2008).

Oaks A, Sivasankar S, Goodfellow VJ. The specificity of methionine sulfoximine and azaserine inhibition in plant tissues. Phytochemistry 49: 355-357 (1998).

Ogasawara H, Obata H, Hata Y, Takahashi S, Gomi K. Crawler, a novel Tc1/mariner-type transposable element in Aspergillus oryzae transposes under stress conditions. Fungal Genet. Biol. 46: 441-449 (2009).

Ogawa K, Akagawa E, Yamane K, Sun ZW, LaCelle M, Zuber P, Nakano MM. The nasB operon and nasA gene are required for nitrate/nitrite assimilation in Bacillus subtilis. J. Bacteriol. 177: 1409-1413 (1995).

Ohno H, Zhu GF, Mohan VP, Chu D, Kohno S, Jacobs WR, Chan J. The effects of reactive nitrogen intermediates on gene expression in Mycobacterium tuberculosis. Cell Microbiol. 5: 637-648 (2003).

Ohresser M, Matagne RF, Loppes R. Expression of the arylsulphatase reporter gene under the control of the nit1 promoter in Chlamydomonas reinhardtii. Curr. Genet. 31: 264-271 (1997).

Okamoto PM, Garrett RH, Marzluf GA. Molecular characterization of conventional and new repeat-induced mutants of nit-3, the structural gene that encodes nitrate reductase in Neurospora crassa. Mol. Gen. Genet. 238: 81-90 (1993).

Okamoto PM, Marzluf GA. Nitrate reductase of Neurospora crassa: the functional role of individual amino acids in the heme domain as examined by site-directed mutagenesis. Mol. Gen. Genet. 240: 221-230 (1993).

Olmo-Mira MF, Gavira M, Richardson DJ, Castillo F, Moreno-Vivian C, Roldan MD. NapF is a cytoplasmic iron-sulfur protein required for Fe-S cluster assembly in the periplasmic nitrate reductase. J. Biol. Chem. 279: 49727-49735 (2004).

Omata T, Andriesse X, Hirano A. Identification and characterization of a gene cluster involved in nitrate transport in the cyanobacterium Synechococcus sp. PCC7942. Mol. Gen. Genet. 236: 193-202 (1993).

Orea A, Pajuelo P, Pajuelo E, Quidiello C, Romero JM, Marquez AJ. Isolation of photorespiratory mutants from Lotus japonicus deficient in glutamine synthetase. Physiol. Plant. 115: 352-361 (2002).

Osaka T, Yoshie S, Tsuneda S, Hirata A, Iwami N, Inamori Y. Identification of acetate- or methanol-assimilating bacteria under nitrate-reducing conditions by stable-isotope probing. Microb. Ecol. 52: 253-266 (2006).

Oswald O, Martin T, Dominy PJ, Graham IA. Plastid redox state and sugars: interactive regulators of nuclear-encoded photosynthetic gene expression. Proc. Natl. Acad. Sci. U.S.A. 98: 2047-2052 (2001).

Overton TW, Griffiths L, Patel MD, Hobman JL, Penn CW, Cole JA, Constantinidou C. Microarray analysis of gene regulation by oxygen, nitrate, nitrite, FNR, NarL and NarP during anaerobic growth of Escherichia coli: new insights into microbial physiology. Biochem. Soc. Trans. 34: 104-107 (2006).

Packard T, Blasco D, Estrada M. Modeling physiological processes in plankton on enzyme kinetic principles. Sci. Mar. 68: 49-56 (2004).

Paerl RW, Foster RA, Jenkins BD, Montoya JP, Zehr JP. Phylogenetic diversity of cyanobacterial narB genes from various marine habitats. Environ. Microbiol. 10: 3377-3387 (2008).

Page L, Griffiths L, Cole JA. Different physiological roles of two independent pathways for nitrite reduction to ammonia by enteric bacteria. Arch. Microbiol. 154: 349-354 (1990).

Pageau K, Reisdorf-Cren M, Morot-Gaudry JF, Masclaux-Daubresse C. The two senescence-related markers, GS1 (cytosolic glutamine synthetase) and GDH (glutamate dehydrogenase), involved in nitrogen mobilization, are differentially regulated during pathogen attack and by stress hormones and reactive oxygen species … J. Exp. Bot. 57: 547-557 (2006).

Pajuelo E, Pajuelo P, Clemente MT, Marquez AJ. Regulation of the expression of ferredoxin-nitrite reductase in synchronous cultures of Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1249: 72-78 (1995).

Pajuelo P, Pajuelo E, Forde BG, Marquez AJ. Regulation of the expression of ferredoxin-glutamate synthase in barley. Planta 203: 517-525 (1997).

Pajuelo P, Pajuelo E, Orea A, Romero JM, Marquez AJ. Influence of plant age and growth conditions on nitrate assimilation in roots of Lotus japonicus plants. Funct. Plant Biol. 29: 485-494 (2002).

Pal M, Karthikeyapandian V, Jain V, Srivastava AC, Raj A, Sengupta UK. Biomass production and nutritional levels of berseem (Trifolium alexandrium) grown under elevated CO2. Agric. Ecosyst. Environ. 101: 31-38 (2004).

Palauqui JC, Elmayan T, De Borne FD, Crete P, Charles C, Vaucheret H. Frequencies, timing, and spatial patterns of co-suppression of nitrate reductase and nitrite reductase in transgenic tobacco plants. Plant Physiol. 112: 1447-1456 (1996).

Palauqui JC, Elmayan T, Pollien JM, Vaucheret H. Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 16: 4738-4745 (1997).

Palauqui JC, Vaucheret H. Field trial analysis of nitrate reductase co-suppression: a comparative study of 38 combinations of transgene loci. Plant Mol. Biol. 29: 149-159 (1995).

Palma JM, Jimenez A, Sandalio LM, Corpas FJ, Lundqvist M, Gomez M, Sevilla F, del Río LA. Antioxidative enzymes from chloroplasts, mitochondria, and peroxisomes during leaf senescence of nodulated pea plants. J. Exp. Bot. 57: 1747-1758 (2006).

Palmer T, Santini CL, Iobbi-Nivol C, Eaves DJ, Boxer DH, Giordano G. Involvement of the narJ and mob gene products in distinct steps in the biosynthesis of the molybdoenzyme nitrate reductase in Escherichia coli. Mol. Microbiol. 20: 875-884 (1996).

Palmer T, Vasishta A, Whitty PW, Boxer DH. Isolation of protein FA, a product of the mob locus required for molybdenum cofactor biosynthesis in Escherichia coli. Eur. J. Biochem. 222: 687-692 (1994).

Palms B, Goupil P, de Almeida Engler J, Van der Straeten D, Van Montagu M, Rambour S. Evidence for the nitrate-dependent spatial regulation of the nitrate reductase gene in chicory roots. Planta 200: 20-27 (1996).

Pan H, Feng B, Marzluf GA. Two distinct protein-protein interactions between the NIT2 and NMR regulatory proteins are required to establish nitrogen metabolite repression in Neurospora crassa. Mol. Microbiol. 26: 721-729 (1997).

Panaiotov S. Crystalline nitrate reductase reagent for drug susceptibility testing of Mycobacterium tuberculosis. Int. J. Antimicrob. Agents 34: 191-2 (2009).

Panesar NS, Chan KW. Evidence for nitrite reductase activity in intact mouse Leydig tumor cells. Steroids 71: 984-992 (2006).

Pantel I, Lindgren PE, Neubauer H, Gotz F. Identification and characterization of the Staphylococcus carnosus nitrate reductase operon. Mol. Gen. Genet. 259: 105-114 (1998).

Pathre UV, Sinha AK, Ranade SA, Shirke PA. Activation of sucrose-phosphate synthase from Prosopis juliflora in light: effects of protein kinase and protein phosphatase inhibitors. Physiol. Plant. 108: 249-254 (2000).

Pattanayak D, Chatterjee SR. Inactivation of sunflower NADH:nitrate reductase by white light-activated rose bengal. Mol. Cell Biol. Res. Commun. 1: 237-240 (1999).

Patton CJ, Fischer AE, Campbell WH, Campbell ER. Corn leaf nitrate reductase - A nontoxic alternative to cadmium for photometric nitrate determinations in water samples by air- segmented continuous-flow analysis. Environ. Sci. Technol. 36: 729-735 (2002).

Pau RN, Lawson DM. Transport, homeostasis, regulation, and binding of molybdate and tungstate to proteins. Met. Ions Biol. Syst. 39: 31-74 (2002).

Payne WJ, Liu MY, Bursakov SA, Le Gall J. Microbial and plant metabolism of NO. Biofactors 6: 47-52 (1997).

Paz-Yepes J, Flores E, Herrero A. Transcriptional effects of the signal transduction protein P(II) (glnB gene product) on NtcA-dependent genes in Synechococcus sp. PCC 7942. FEBS Lett. 543: 42-46 (2003).

Pearce ISK, van der Wal R. Effects of nitrogen deposition on growth and survival of montane Racomitrium lanuginosum heath. Biol. Conserv. 104: 83-89 (2002).

Pearce ISK, Woodin SJ, van der Wal R. Physiological and growth responses of the montane bryophyte Racomitrium lanuginosum to atmospheric nitrogen deposition. New Phytol. 160: 145-155 (2003).

Pelsy F, Gonneau M. Genetic and biochemical analysis of intragenic complementation events among nitrate reductase apoenzyme-deficient mutants of Nicotiana plumbaginifolia. Genetics 127: 199-204 (1991).

Perdomo G, Navarro FJ, Medina B, Machin F, Tejera P, Siverio JM. Tobacco Nia2 cDNA functionally complements a Hansenula polymorpha yeast mutant lacking nitrate reductase. A new expression system for the study of plant proteins involved in nitrate assimilation. Plant Mol. Biol. 50: 405-413 (2002).

Perez MD, Gonzalez C, Avila J, Brito N, Siverio JM. The YNT1 gene encoding the nitrate transporter in the yeast Hansenula polymorpha is clustered with genes YNI1 and YNR1 encoding nitrite reductase and nitrate reductase, and its disruption causes inability to grow in nitrate. Biochem. J. 321: 397-403 (1997).

Perrine KG, Marzluf GA. Amber nonsense mutations in regulatory and structural genes of the nitrogen control circuit of Neurospora crassa. Curr. Genet. 10: 677-684 (1986).

Petri R, Imhoff JF. The relationship of nitrate reducing bacteria on the basis of narH gene sequences and comparison of narH and 16S rDNA based phylogeny. Syst. Appl. Microbiol. 23: 47-57 (2000).

Philippot L. Denitrifying genes in bacterial and Archaeal genomes. Biochim. Biophys. Acta 1577: 355-376 (2002).

Philippot L, Clays-Josserand A, Lensi R, Trinsoutreau I, Normand P, Potier P. Purification of the dissimilative nitrate reductase of Pseudomonas fluorescens and the cloning and sequencing of its corresponding genes. Biochim. Biophys. Acta 1350: 272-276 (1997).

Philippot L, Piutti S, Martin-Laurent F, Hallet S, Germon JC. Molecular analysis of the nitrate-reducing community from unplanted and maize-planted soils. Appl. Environ. Microbiol. 68: 6121-6128 (2002).

Pierru B, Grosse S, Pignol D, Sabaty M. Genetic and biochemical evidence for the involvement of a molybdenum-dependent enzyme in one of the selenite reduction pathways of Rhodobacter sphaeroides f. sp. denitrificans IL106. Appl. Environ. Microbiol. 72: 3147-3153 (2006).

Pieterse CM, van't Klooster J, van den Berg-Velthuis GC, Govers F. NiaA, the structural nitrate reductase gene of Phytophthora infestans: isolation, characterization and expression analysis in Aspergillus nidulans. Curr. Genet. 27: 359-366 (1995).

Pigaglio E, Durand N, Meyer C. A conserved acidic motif in the N-terminal domain of nitrate reductase is necessary for the inactivation of the enzyme in the dark by phosphorylation and 14-3-3 binding. Plant Physiol. 119: 219-230 (1999).

Pignocchi C, Berardi E, Cox BS. Nitrate reduction and the isolation of Nit- mutants in Hansenula polymorpha. Microbiology 144: 2323-2330 (1998).

Pignol D, Adriano JM, Fontecilla-Camps JC, Sabaty M. Crystallization and preliminary X-ray analysis of the periplasmic nitrate reductase (NapA-NapB complex) from Rhodobacter sphaeroides f. sp. denitrificans. Acta Crystallogr. D. Biol. Crystallogr. 57: 1900-1902 (2001).

Pike CS, Cohen WS, Monroe JD. Nitrate reductase - A model system for the investigation of enzyme induction in eukaryotes. Biochem. Mol. Biol. Educ. 30: 111-116 (2002).

Pilgrim ML, Caspar T, Quail PH, McClung CR. Circadian and light-regulated expression of nitrate reductase in Arabidopsis. Plant Mol. Biol. 23: 349-364 (1993).

Pino C, Olmo-Mira F, Cabello P, Martinez-Luque M, Castillo F, Roldan MD, Moreno-Vivian C. The assimilatory nitrate reduction system of the phototrophic bacterium Rhodobacter capsulatus E1F1. Biochem. Soc. Trans. 34: 127-129 (2006).

Pittman MS, Kelly DJ. Electron transport through nitrate and nitrite reductases in Campylobacter jejuni. Biochem. Soc. Trans. 33: 190-192 (2005).

Planchet E, Jagadis Gupta K, Sonoda M, Kaiser WM. Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J. 41: 732-743 (2005).

Planchet E, Kaiser WM. Nitric oxide (NO) detection by DAF fluorescence and chemiluminescence: a comparison using abiotic and biotic NO sources. J. Exp. Bot. 57: 3043-3055 (2006).

Planchet E, Sonoda M, Zeier J, Kaiser WM. Nitric oxide (NO) as an intermediate in the cryptogein-induced hypersensitive response--a critical re-evaluation. Plant Cell Environ. 29: 59-69 (2006).

Platt A, Ravagnani A, Arst H Jr, Kirk D, Langdon T, Caddick MX. Mutational analysis of the C-terminal region of AREA, the transcription factor mediating nitrogen metabolite repression in Aspergillus nidulans. Mol. Gen. Genet. 250: 106-114 (1996).

Plhak F. Nitrogen supply through transpiration mass flow can limit nitrogen nutrition of plants. Plant Soil Environ. 49: 473-479 (2003).

Polcyn W. Mass spectrometry identification of membrane-bound respiratory nitrate reductase from Bradyrhizobium sp. (Lupinus). Acta Biochim. Pol. 55: 753-760 (2008).

Polcyn W. Nitrate-related down-regulation of respiratory nitrate reductase from Bradyrhizobium sp. (Lupinus). Acta Biochim. Pol. 55: 761-766 (2008).

Polcyn W, Lucinski R. Dissimilatory nitrate reductase from Bradyrhizobium sp. (Lupinus): subcellular location, catalytic properties, and characterization of the active enzyme forms. Curr. Microbiol. 52: 231-237 (2006).

Polcyn W, Lucinski R. Effect of N oxyanions on anaerobic induction of nitrate reductase in subcellular fractions of Bradyrhizobium sp. (Lupinus). Antonie Van Leeuwenhoek. 95: 159-164 (2009).

Polcyn W, Lucinski R. Aerobic and anaerobic nitrate and nitrite reduction in free-living cells of Bradyrhizobium sp (Lupinus). FEMS Microbiol. Lett. 226: 331-337 (2003).

Polge C, Jossier M, Crozet P, Gissot L, Thomas M. Beta-subunits of the SnRK1 complexes share a common ancestral function together with expression and function specificities; physical interaction with nitrate reductase specifically occurs via AKINbeta1 subunit. Plant Physiol. 148: 1570-1582 (2008).

Pollock VV, Conover RC, Johnson MK, Barber MJ. Bacterial expression of the molybdenum domain of assimilatory nitrate reductase: production of both the functional molybdenum-containing domain and the nonfunctional tungsten analog. Arch. Biochem. Biophys. 403: 237-248 (2002).

Pommier J, Mandrand MA, Holt SE, Boxer DH, Giordano G. A second phenazine methosulphate-linked formate dehydrogenase isoenzyme in Escherichia coli. Biochim. Biophys. Acta 1107: 305-313 (1992).

Poonnachit U, Darnell R. Effect of ammonium and nitrate on ferric chelate reductase and nitrate reductase in Vaccinium species. Ann. Bot. 93: 399-405 (2004).

Poonnachit U, Darnell R. Effect of ammonium and nitrate on ferric chelate reductase and nitrate reductase in Vaccinium species. Ann. Bot. (Lond.) 93: 399-405 (2004).

Poopal AC, Laxman RS. Studies on biological reduction of chromate by Streptomyces griseus. J. Hazard. Mater. 169: 539-545 (2009).

Popova TN, Appenroth KJ. Cytosolic and chloroplastic NADP-dependent isocitrate dehydrogenases in Spirodela polyrhiza. II. Regulation of enzyme capacity. J. Plant Physiol. 159: 239-244 (2002).

Potter L, Millington P, Griffiths L, Cole J. Survival of bacteria during oxygen limitation. Int. J. Food Microbiol. 55: 11-18 (2000).

Poulsen N, Kroger N. A new molecular tool for transgenic diatoms: control of mRNA and protein biosynthesis by an inducible promoter-terminator cassette. FEBS J. 272: 3413-3423 (2005).

Pourakbar L, Khayami M, Khara J, Farbodnia T. Physiological effects of copper on some biochemical parameters in Zea mays L. seedlings. Pak. J. Biol. Sci. 10: 4092-4096 (2007).

Pouteau S, Cherel I, Vaucheret H, Caboche M. Nitrate reductase mRNA regulation in Nicotiana plumbaginifolia nitrate reductase-deficient mutants. Plant Cell 1: 1111-1120 (1989).

Pozuelo M, MacKintosh C, Galvan A, Fernandez E. Cytosolic glutamine synthetase and not nitrate reductase from the green alga Chlamydomonas reinhardtii is phosphorylated and binds 14-3-3 proteins. Planta 212: 264-269 (2001).

Prasanna R, Dhar DW, Dominic TK, Tiwari ON, Singh PK. Isolation and characterisation of phycobiliprotein rich mutant of cyanobacterium Synechocystis sp. Acta Biol. Hung. 54: 113-120 (2003).

Pratscher J, Stichternoth C, Fichtl K, Schleifer KH, Braker G. Application of recognition of individual genes-fluorescence in situ hybridization (RING-FISH) to detect nitrite reductase genes (nirK) of denitrifiers in pure cultures and environmental samples. Appl. Environ. Microbiol. 75: 802-810 (2009).

Premakumar R, Sorger GJ, Gooden D. Repression of nitrate reductase in Neurospora studied by using L-methionine-DL-sulfoximine and glutamine auxotroph gln-1b. J. Bacteriol. 143: 411-415 (1980).

Premakumar R, Sorger GJ, Gooden D. Physiological characterization of a Neurospora crassa mutant with impaired regulation of nitrate reductase. J. Bacteriol. 144: 542-551 (1980).

Premakumar R, Sorger GJ, Gooden D. Nitrogen metabolite repression of nitrate reductase in Neurospora crassa. J. Bacteriol. 137: 1119-1126 (1979).

Prest AG, Winson MK, Hammond JR, Stewart GS. The construction and application of a lux-based nitrate biosensor. Lett. Appl. Microbiol. 24: 355-360 (1997).

Prieto R, Dubus A, Galvan A, Fernandez E. Isolation and characterization of two new negative regulatory mutants for nitrate assimilation in Chlamydomonas reinhardtii obtained by insertional mutagenesis. Mol. Gen. Genet. 251: 461-471 (1996).

Prieto R, Fernandez E. Toxicity of and mutagenesis by chlorate are independent of nitrate reductase activity in Chlamydomonas reinhardtii. Mol. Gen. Genet. 237: 429-438 (1993).

Prieto R, Pardo JM, Niu X, Bressan RA, Hasegawa PM. Salt-sensitive mutants of Chlamydomonas reinhardtii isolated after insertional tagging. Plant Physiol. 112: 99-104 (1996).

Privalle CT, Beyer WF Jr, Fridovich I. Anaerobic induction of ProMn-superoxide dismutase in Escherichia coli. J. Biol. Chem. 264: 2758-2763 (1989).

Prosser IM, Massonneau A, Smyth AJ, Waterhouse RN, Forde BG, Clarkson DT. Nitrate assimilation in the forage legume Lotus japonicus L. Planta 223: 821-834 (2006).

Prosser IM, Purves JV, Saker LR, Clarkson DT. Rapid disruption of nitrogen metabolism and nitrate transport in spinach plants deprived of sulphate. J. Exp. Bot. 52: 113-121 (2001).

Provan F, Aksland LM, Meyer C, Lillo C. Deletion of the nitrate reductase N-terminal domain still allows binding of 14-3-3 proteins but affects their inhibitory properties. Plant Physiol. 123: 757-764 (2000).

Punt PJ, Strauss J, Smit R, Kinghorn JR, van den Hondel CA, Scazzocchio C. The intergenic region between the divergently transcribed niiA and niaD genes of Aspergillus nidulans contains multiple NirA binding sites which act bidirectionally. Mol. Cell Biol. 15: 5688-5699 (1995).

Quan D, Shim JH, Kim JD, Park HS, Cha GS, Nam H. Electrochemical determination of nitrate with nitrate reductase-immobilized electrodes under ambient air. Anal. Chem. 77: 4467-4473 (2005).

Quesada A, Fernandez E. Expression of nitrate assimilation related genes in Chlamydomonas reinhardtii. Plant Mol. Biol. 24: 185-194 (1994).

Quesada A, Galvan A, Fernandez E. Identification of nitrate transporter genes in Chlamydomonas reinhardtii. Plant J. 5: 407-419 (1994).

Quesada A, Galvan A, Schnell RA, Lefebvre PA, Fernandez E. Five nitrate assimilation-related loci are clustered in Chlamydomonas reinhardtii. Mol. Gen. Genet. 240: 387-394 (1993).

Quesada A, Gomez I, Fernandez E. Clustering of the nitrite reductase gene and a light-regulated gene with nitrate assimilation loci in Chlamydomonas reinhardtii. Planta 206: 259-265 (1998).

Quesada A, Krapp A, Trueman LJ, Daniel-Vedele F, Fernandez E, Forde BG, Caboche M. PCR-identification of a Nicotiana plumbaginifolia cDNA homologous to the high-affinity nitrate transporters of the crnA family. Plant Mol. Biol. 34: 265-274 (1997).

Quinn GB, Trimboli AJ, Prosser IM, Barber MJ. Spectroscopic and kinetic properties of a recombinant form of the flavin domain of spinach NADH: nitrate reductase. Arch. Biochem. Biophys. 327: 151-160 (1996).

Quinones MA, Galvan A, Fernandez E, Aparicio PJ. Blue-light requirement for the biosynthesis of an NO2- transport system in the Chlamydomonas reinhardtii nitrate transport mutant S10. Plant Cell Environ. 22: 1169-1175 (1999).

Raaijmakers H, Macieira S, Dias J, Teixeira S, Bursakov S, Huber R, Moura J, Moura I, Romao M. Gene sequence and the 1.8 A crystal structure of the tungsten-containing formate dehydrogenase from Desulfovibrio gigas. Structure (Camb.) 10: 1261 (2002).

Raghuram N, Sopory SK. Roles of nitrate, nitrite and ammonium ion in phytochrome regulation of nitrate reductase gene expression in maize. Biochem. Mol. Biol. Int. 47: 239-249 (1999).

Raghuram N, Sopory SK. Evidence for some common signal transduction events for opposite regulation of nitrate reductase and phytochrome-I gene expression by light. Plant Mol. Biol. 29: 25-35 (1995).

Rai AK, Tiwari SP. Response to NaCl of nitrate assimilation and nitrogenase activity of the cyanobacterium Anabaena sp. PCC 7120 and its mutants. J. Appl. Microbiol. 87: 877-883 (1999).

Rai AK, Tiwari SP. Mutants of the cyanobacterium Anabaena sp PCC 7120 altered in nitrate transport and reduction. Curr. Microbiol. 39: 237-243 (1999).

Rai PK, Mallick N, Rai LC. Effect of nickel on certain physiological and biochemical behaviors of an acid tolerant Chlorella vulgaris. Biometals 7: 193-200 (1994).

Rai PK, Mallick N, Rai LC. Effect of Cu and Ni on growth, mineral uptake, photosynthesis and enzyme activities of Chlorella vulgaris at different pH values. Biomed. Environ. Sci. 7: 56-67 (1994).

Rai PK, Rai LC. Interactive effects of UV-B and Cu on photosynthesis, uptake and metabolism of nutrients in a green alga Chlorella vulgaris under simulated ozone column. J. Gen. Appl. Microbiol. 43: 281-288 (1997).

Rai RK, Singh P, Shrivastava AK, Suman A. Modulation of low-temperature-induced biochemical changes in bud and root band zones of sugar cane sets by potassium, zinc, and ethrel for improving sprouting. J. Agric. Food. Chem. 56: 11976-11982 (2008).

Rajagopalan AV, Gayathri J, Raghavendra AS. Modulation by weak bases or weak acids of the pH of cell sap and phosphoenolpyruvate carboxylase activity in leaf discs of C4 plants. Physiol. Plant. 104: 456-462 (1998).

Raju KS, Sharma ND, Lodha ML. Effect of combined nitrogen on the expression of nitrate reductase and nitrite reductase in Azorhizobium caulinodans. Indian J. Exp. Biol. 35: 866-870 (1997).

Ramalho CB, Hastings JW, Colepicolo P. Circadian oscillation of nitrate reductase activity in Gonyaulax polyedra is due to changes in cellular protein levels. Plant Physiol. 107: 225-231 (1995).

Ramaswamy KS, Endley S, Golden JW. Nitrate reductase activity and heterocyst suppression on nitrate in Anabaena sp. strain PCC 7120 require moeA. J. Bacteriol. 178: 3893-3898 (1996).

Ramirez S, Moreno R, Zafra O, Castan P, Valles C, Berenguer J. Two nitrate/nitrite transporters are encoded within the mobilizable plasmid for nitrate respiration of Thermus thermophilus HB8. J. Bacteriol. 182: 2179-2183 (2000).

Ramirez-Arcos S, Fernandez-Herrero LA, Berenguer J. A thermophilic nitrate reductase is responsible for the strain specific anaerobic growth of Thermus thermophilus HB8. Biochim. Biophys. Acta 1396: 215-227 (1998).

Ramos F, Blanco G, Gutierrez JC, Luque F, Tortolero M. Identification of an operon involved in the assimilatory nitrate-reducing system of Azotobacter vinelandii. Mol. Microbiol. 8: 1145-1153 (1993).

Rapheal SV, Swaminathan KR, Lalitha K. Metabolic characteristics of an aerobe isolated from a methylotrophic methanogenic enrichment culture. J. Biosci. 28: 235-242 (2003).

Rapson TD, Kappler U, Bernhardt PV. Direct catalytic electrochemistry of sulfite dehydrogenase: mechanistic insights and contrasts with related Mo enzymes. Biochim. Biophys. Acta 1777: 1319-1325 (2008).

Rastogi R, Bate NJ, Sivasankar S, Rothstein SJ. Footprinting of the spinach nitrite reductase gene promoter reveals the preservation of nitrate regulatory elements between fungi and higher plants. Plant Mol. Biol. 34: 465-476 (1997).

Ratnam K, Shiraishi N, Campbell WH, Hille R. Spectroscopic and kinetic characterization of the recombinant wild-type and C242S mutant of the cytochrome b reductase fragment of nitrate reductase. J. Biol. Chem. 270: 24067-24072 (1995).

Ratnam K, Shiraishi N, Campbell WH, Hille R. Spectroscopic and kinetic characterization of the recombinant cytochrome c reductase fragment of nitrate reductase. Identification of the rate-limiting catalytic step. J. Biol. Chem. 272: 2122-2128 (1997).

Rawyler A, Arpagaus S, Braendle R. Impact of oxygen stress and energy availability on membrane stability of plant cells. Ann. Bot. (Lond.) 90: 499-507 (2002).

Rediers H, Vanderleyden J, De Mot R. Nitrate respiration in Pseudomonas stutzeri A15 and its involvement in rice and wheat root colonization. Microbiol. Res. 164: 461-468 (2009).

Redinbaugh MG, Campbell WH. Glutamine synthetase and ferredoxin-dependent glutamate synthase expression in the maize (Zea mays) root primary response to nitrate. Evidence for an organ-specific response. Plant Physiol. 101: 1249-1255 (1993).

Reents H, Gruner I, Harmening U, Bottger LH, Layer G, Heathcote P, Trautwein AX, Jahn D, Hartig E. Bacillus subtilis Fnr senses oxygen via a [4Fe-4S] cluster coordinated by three cysteine residues without change in the oligomeric state. Mol. Microbiol. 60: 1432-1445 (2006).

Reents H, Munch R, Dammeyer T, Jahn D, Hartig E. The Fnr regulon of Bacillus subtilis. J. Bacteriol. 188: 1103-1112 (2006).

Reinhart F, Achebach S, Koch T, Unden G. Reduced apo-fumarate nitrate reductase regulator (apoFNR) as the major form of FNR in aerobically growing Escherichia coli. J. Bacteriol. 190: 879-886 (2008).

Renckens S, De Greve H, Beltran-Herrera J, Toong LT, Deboeck F, De Rycke R, Van Montagu M, Hernalsteens JP. Insertion mutagenesis and study of transposable elements using a new unstable virescent seedling allele for isolation of haploid petunia lines. Plant J. 10: 533-544 (1996).

Restivo FM. Molecular cloning of glutamate dehydrogenase genes of Nicotiana plumbaginifolia: structure analysis and regulation of their expression by physiological and stress conditions. Plant Sci. 166: 971-982 (2004).

Rexach J, Llamas A, Fernandez E, Galvan A. The activity of the high-affinity nitrate transport system I (NRT2;1, NAR2) is responsible for the efficient signalling of nitrate assimilation genes in Chlamydomonas reinhardtii. Planta 215: 606-611 (2002).

Reyes F, Gavira M, Castillo F, Moreno-Vivian C. Periplasmic nitrate-reducing system of the phototrophic bacterium Rhodobacter sphaeroides DSM 158: transcriptional and mutational analysis of the napKEFDABC gene cluster. Biochem. J. 331: 897-904 (1998).

Reyes F, Roldan MD, Klipp W, Castillo F, Moreno-Vivian C. Isolation of periplasmic nitrate reductase genes from Rhodobacter sphaeroides DSM 158: structural and functional differences among prokaryotic nitrate reductases. Mol. Microbiol. 19: 1307-1318 (1996).

Reyes JC, Florencio FJ. A mutant lacking the glutamine synthetase gene (glnA) is impaired in the regulation of the nitrate assimilation system in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 176: 7516-7523 (1994).

Ribeiro DM, Desikan R, Bright J, Confraria A, Harrison J, Hancock JT, Barros RS, Neill SJ, Wilson ID. Differential requirement for NO during ABA-induced stomatal closure in turgid and wilted leaves. Plant Cell Environ. 32: 46-57 (2009).

Richardson DJ, Berks BC, Russell DA, Spiro S, Taylor CJ. Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell Mol. Life Sci. 58: 165-178 (2001).

Richardson DJ, Watmough NJ. Inorganic nitrogen metabolism in bacteria. Curr. Opin. Chem. Biol. 3: 207-219 (1999).

Ridley H, Watts CA, Richardson DJ, Butler CS. Resolution of distinct membrane-bound enzymes from Enterobacter cloacae SLD1a-1 that are responsible for selective reduction of nitrate and selenate oxyanions. Appl. Environ. Microbiol. 72: 5173-5180 (2006).

Rigobello-Masini M, Masini JC, Aidar E. The profiles of nitrate reductase and carbonic anhydrase activity in batch cultivation of the marine microalgae Tetraselmis gracilis growing under different aeration conditions. FEMS Microbiol. Ecol. 57: 18-25 (2006).

Ritchie SW, Redinbaugh MG, Shiraishi N, Vrba JM, Campbell WH. Identification of a maize root transcript expressed in the primary response to nitrate: characterization of a cDNA with homology to ferredoxin-NADP+ oxidoreductase. Plant Mol. Biol. 26: 679-690 (1994).

Rivero RM, Sanchez E, Ruiz JM, Romero L. Iron metabolism in tomato and watermelon plants: Influence of nitrogen source. J. Plant Nutr. 26: 2413-2424 (2003).

Robles EF, Sanchez C, Bonnard N, Delgado MJ, Bedmar EJ. The Bradyrhizobium japonicum napEDABC genes are controlled by the FixLJ-FixK(2)-NnrR regulatory cascade. Biochem. Soc. Trans. 34: 108-110 (2006).

Roca I, Ballana E, Panosa A, Torrents E, Gibert I. Fumarate and nitrate reduction (FNR) dependent activation of the Escherichia coli anaerobic ribonucleotide reductase nrdDG promoter. Int. Microbiol. 11: 49-56 (2008).

Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J. Exp. Bot. 53: 103-110 (2002).

Rodrigues FD, de Souza SR, Rodrigues FD, Fernandes MS. Nitrogen metabolism in rice cultivated under seasonal flush of nitrate. J. Plant Nutr. 27: 395-409 (2004).

Rodriguez R, Lara C, Guerrero MG. Nitrate transport in the cyanobacterium Anacystis nidulans R2. Kinetic and energetic aspects. Biochem. J. 282: 639-643 (1992).

Rosenstiel TN, Ebbets AL, Khatri WC, Fall R, Monson RK. Induction of poplar leaf nitrate reductase: a test of extrachloroplastic control of isoprene emission rate. Plant Biol. 6: 12-21 (2004).

Rothery RA, Blasco F, Magalon A, Weiner JH. The diheme cytochrome b subunit (Narl) of Escherichia coli nitrate reductase A (NarGHI): structure, function, and interaction with quinols. J. Mol. Microbiol. Biotechnol. 3: 273-283 (2001).

Rothery RA, Blasco F, Weiner JH. Electron transfer from heme bL to the [3Fe-4S] cluster of Escherichia coli nitrate reductase A (NarGHI). Biochemistry 40: 5260-5268 (2001).

Rothery RA, Magalon A, Giordano G, Guigliarelli B, Blasco F, Weiner JH. The molybdenum cofactor of Escherichia coli nitrate reductase A (NarGHI). Effect of a mobAB mutation and interactions with [Fe-S] clusters. J. Biol. Chem. 273: 7462-7469 (1998).

Rowe JJ, Ubbink-Kok T, Molenaar D, Konings WN, Driessen AJ. NarK is a nitrite-extrusion system involved in anaerobic nitrate respiration by Escherichia coli. Mol. Microbiol. 12: 579-586 (1994).

Roy SJ, Cuin TA, Leigh RA. Nanolitre-scale assays to determine the activities of enzymes in individual plant cells. Plant J. 34: 555-564 (2003).

Rubio LM, Flores E, Herrero A. Molybdopterin guanine dinucleotide cofactor in Synechococcus sp. nitrate reductase: identification of mobA and isolation of a putative moeB gene. FEBS Lett. 462: 358-362 (1999).

Rubio LM, Flores E, Herrero A. Purification, cofactor analysis, and site-directed mutagenesis of Synechococcus ferredoxin-nitrate reductase. Photosynth. Res. 72: 13-26 (2002).

Rubio LM, Flores E, Herrero A. The narA locus of Synechococcus sp. strain PCC 7942 consists of a cluster of molybdopterin biosynthesis genes. J. Bacteriol. 180: 1200-1206 (1998).

Rubio LM, Herrero A, Flores E. A cyanobacterial narB gene encodes a ferredoxin-dependent nitrate reductase. Plant Mol. Biol. 30: 845-850 (1996).

Ruiz JM, Blasco B, Rivero RM, Romero L. Nicotine-free and salt-tolerant tobacco plants obtained by grafting to salinity-resistant rootstocks of tomato. Physiol. Plant. 124: 465-475 (2005).

Ruiz JM, Castilla N, Romero L. Nitrogen metabolism in pepper plants applied with different bioregulators. J. Agric. Food Chem. 48: 2925-2999 (2000).

Ruiz JM, Rivero RM, Romero L. Comparative effect of Al, Se, and Mo toxicity on NO3(-) assimilation in sunflower (Helianthus annuus L.) plants. J. Environ. Manage. 83: 207-212 (2007).

Ruiz-Diez B. Strategies for the transformation of filamentous fungi. J. Appl. Microbiol. 92: 189-195 (2002).

Ruiz-Lozano JM. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13: 309-317 (2003).

Ruiz-Lozano JM, Collados C, Porcel R, Azcon R, Barea JM. Identification of a cDNA from the arbuscular mycorrhizal fungus Glomus intraradices that is expressed during mycorrhizal symbiosis and up-regulated by N fertilization. Mol. Plant Microbe Interact. 15: 360-367 (2002).

Ruoff P, Lillo C. Evidence for increased proton dissociation in low-activity forms of dephosphorylated squash-leaf nitrate reductase. Biophys. Chem. 67: 59-64 (1997).

Ruoff P, Lillo C. Molecular oxygen as electron acceptor in the NADH-nitrate reductase system. Biochem. Biophys. Res. Commun. 172: 1000-1005 (1990).

Ruoff P, Lillo C, Campbell WH. NADH substrate inhibition and enhanced thermal stability of higher plant nitrate reductase immobilized via a monoclonal antibody. Biochem. Biophys. Res. Commun. 161: 496-501 (1989).

Sabaty M, Avazeri C, Pignol D, Vermeglio A. Characterization of the reduction of selenate and tellurite by nitrate reductases. Appl. Environ. Microbiol. 67: 5122-5126 (2001).

Sagi M, Fluhr R, Lips SH. Aldehyde oxidase and xanthine dehydrogenase in a flacca tomato mutant with deficient abscisic acid and wilty phenotype. Plant Physiol. 120: 571-578 (1999).

Saha SK, Uma L, Subramanian G. Nitrogen stress induced changes in the marine cyanobacterium Oscillatoria willei BDU 130511. FEMS Microbiol. Ecol. 45: 263-272 (2003).

Sahrawy M, Avila C, Chueca A, Canovas FM, Lopez-Gorge J. Increased sucrose level and altered nitrogen metabolism in Arabidopsis thaliana transgenic plants expressing antisense chloroplastic fructose-1,6-bisphosphatase. J. Exp. Bot. 55: 2495-2503 (2004).

Sairam RK, Srivastava GC. Induction of oxidative stress and antioxidant activity by hydrogen peroxide treatment in tolerant and susceptible wheat genotypes. Biol. Plant. 43: 381-386 (2000).

Sakakibara H, Takei K, Sugiyama T. Isolation and characterization of a cDNA that encodes maize uroporphyrinogen III methyltransferase, an enzyme involved in the synthesis of siroheme, which is prosthetic group of nitrite reductase. Plant J. 10: 883-892 (1996).

Sakamoto T, Bryant DA. Nitrate transport and not photoinhibition limits growth of the freshwater cyanobacterium Synechococcus species PCC 6301 at low temperature. Plant Physiol. 119: 785-94 (1999).

Sakamoto T, Inoue-Sakamoto K, Bryant DA. A novel nitrate/nitrite permease in the marine cyanobacterium Synechococcus sp. strain PCC 7002. J. Bacteriol. 181: 7363-7372 (1999).

Sakihama Y, Nakamura S, Yamasaki H. Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthetic organisms. Plant Cell Physiol. 43: 290-297 (2002).

Salanoubat M, Bui Dang Ha D. Analysis of the petunia nitrate reductase apoenzyme-encoding gene: a first step for sequence modification analysis. Gene 128: 147-154 (1993).

Saleh-Lakha S, Shannon KE, Goyer C, Trevors JT, Zebarth BJ, Burton DL. Nitric oxide reductase gene expression and nitrous oxide production in Pseudomonas mandelii grown with nitrate. Appl. Environ. Microbiol. 74: 6876-6879 (2008).

Sambasivarao D, Turner RJ, Bilous PT, Rothery RA, Shaw G, Weiner JH. Differential effects of a molybdopterin synthase sulfurylase (moeB) mutation on Escherichia coli molybdoenzyme maturation. Biochem. Cell Biol. 80: 435-443 (2002).

Sanchez E, Rivero RM, Ruiz JM, Romero L. Yield and biosynthesis of nitrogenous compounds in fruits of green bean (Phaseolus vulgaris L cv Strike) in response to increasing N fertilisation. J. Sci. Food Agric. 84: 575-580 (2004).

Sanchez E, Rivero RM, Ruiz JM, Romero L. Changes in biomass, enzymatic activity and protein concentration in roots and leaves of green bean plants (Phaseolus vulgaris L. cv. Strike) under high NH4NO3 application rates. Sci. Hortic. 99: 237-248 (2004).

Sander L, Jensen PE, Back LF, Stummann BM, Henningsen KW. Structure and expression of a nitrite reductase gene from bean (Phaseolus vulgaris) and promoter analysis in transgenic tobacco. Plant Mol. Biol. 27: 165-177 (1995).

Sandhu SS, Kinghorn JR, Rajak RC, Unkles SE. Transformation system of Beauveria bassiana and Metarhizium anisopliae using nitrate reductase gene of Aspergillus nidulans. Indian J. Exp. Biol. 39: 650-653 (2001).

Sandu C, Brandsch R. Functional analysis of the Escherichia coli molybdopterin cofactor biosynthesis protein MoeA by site-directed mutagenesis. Biol. Chem. 383: 319-323 (2002).

Sandu C, Brandsch R. Evidence for MoeA-dependent formation of the molybdenum cofactor from molybdate and molybdopterin in Escherichia coli. Arch. Microbiol. 178: 465-470 (2002).

Sang J, Jiang M, Lin F, Xu S, Zhang A, Tan M. Nitric oxide reduces hydrogen peroxide accumulation involved in water stress-induced subcellular anti-oxidant defense in maize plants. J. Integr. Plant Biol. 50: 231-243 (2008).

Santini CL, Iobbi-Nivol C, Romane C, Boxer DH, Giordano G. Molybdoenzyme biosynthesis in Escherichia coli: in vitro activation of purified nitrate reductase from a chlB mutant. J. Bacteriol. 174: 7934-7940 (1992).

Santoro AE, Boehm AB, Francis CA. Denitrifier community composition along a nitrate and salinity gradient in a coastal aquifer. Appl. Environ. Microbiol. 72: 2102-2109 (2006).

Santucci DM, Haas B, Smarrelli J Jr. Regulation of the inducible soybean nitrate reductase isoform in mutants lacking constitutive isoform(s). Biochim. Biophys. Acta 1247: 46-50 (1995).

Sarkar B, Patra AK, Purakayastha TJ, Megharaj M. Assessment of biological and biochemical indicators in soil under transgenic Bt and non-Bt cotton crop in a sub-tropical environment. Environ. Monit. Assess.156: 595-604 (2009).

Sato Y, Shiraishi N, Sato T, Ogura N, Nakagawa H. Arginine and lysine residues as NADH-binding sites in NADH-nitrate reductase from spinach. Phytochemistry 31: 2259-2262 (1992).

Sawada MT, Ishimoto M. Proton translocation coupled to nitrite reduction in anaerobically grown Escherichia coli. J. Biochem. (Tokyo) 97: 205-211 (1985).

Saxena A. Seasonal pattern of metal bioaccumulation and their toxicity on Sphagnum squarrosum. J. Environ. Biol. 27: 71-75 (2006).

Saxena RK, Pandey PK, Bisen PS. Physiological and biochemical alterations in Anabaena 7120 under iron stress. Indian J. Exp. Biol. 40: 594-599 (2002).

Scheible W-R, Krapp A, Stitt M. Reciprocal diurnal changes of phosphoenolpyruvate carboxylase expression and cytosolic pyruvate kinase, citrate synthase and NADP-isocitrate dehydrogenase expression regulate organic acid metabolism during nitrate assimilation in tobacco leaves. Plant Cell Environ. 23: 1155-1167 (2000).

Scheible WR, Gonzalez-Fontes A, Lauerer M, Muller-Rober B, Caboche M, Stitt M. Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9: 783-798 (1997).

Scheible WR, Gonzalez-Fontes A, Morcuende R, Lauerer M, Geiger M, Glaab J, Gojon A, Schulze ED, Stitt M. Tobacco mutants with a decreased number of functional nia genes compensate by modifying the diurnal regulation of transcription, post-translational modification and turnover of nitrate reductase. Planta 203: 304-319 (1997).

Scheurwater I, Koren M, Lambers H, Atkin OK. The contribution of roots and shoots to whole plant nitrate reduction in fast- and slow-growing grass species. J. Exp. Bot. 53: 1635-1642 (2002).

Schiavon M, Ertani A, Nardi S. Effects of an alfalfa protein hydrolysate on the gene expression and activity of enzymes of the tricarboxylic acid (TCA) cycle and nitrogen metabolism in Zea mays L. J. Agric. Food Chem. 56: 11800-11808 (2008).

Schiedlmeier B, Schmitt R, Muller W, Kirk MM, Gruber H, Mages W, Kirk DL. Nuclear transformation of Volvox carteri. Proc. Natl. Acad. Sci. U.S.A. 91: 5080-5084 (1994).

Schildhauer J, Wiedemuth K, Humbeck K. Supply of nitrogen can reverse senescence processes and affect expression of genes coding for plastidic glutamine synthetase and lysine-ketoglutarate reductase/saccharopine dehydrogenase. Plant Biol. (Stuttg.) 10 Suppl. 1: 76-84 (2008).

Schlag S, Fuchs S, Nerz C, Gaupp R, Engelmann S, Liebeke M, Lalk M, Hecker M, Gotz F. Characterization of the oxygen-responsive NreABC regulon of Staphylococcus aureus. J. Bacteriol. 190: 7847-7858 (2008).

Schmitz S, Navarro F, Kutzki CK, Florencio FJ, Bohme H. Glutamate 94 of [2Fe-2S]-ferredoxins is important for efficient electron transfer in the 1:1 complex formed with ferredoxin-glutamate synthase (GltS) from Synechocystis sp. PCC 6803. Biochim. Biophys. Acta 1277: 135-140 (1996).

Schmutz P, Bucher JB, Gunthardt-Goerg MS, Tarjan D, Landolt W. Response of poplar to ozone alone and in combination with NO2 at different nitrogen fertilization levels. Phyton-Ann. REI Bot. 35: 269-289 (1995).

Schmutz P, Tarjan D, Gunthardt-Goerg MS, Matyssek R, Bucher JB. Nitrogen dioxide - A gaseous fertilizer of poplar trees. Phyton-Ann. REI Bot. 35: 219-232 (1995).

Schneider S, Mohamed ME, Fuchs G. Anaerobic metabolism of L-phenylalanine via benzoyl-CoA in the denitrifying bacterium Thauera aromatica. Arch. Microbiol. 168: 310-320 (1997).

Schneidereit J, Hausler RE, Fiene G, Kaiser WM, Weber AP. Antisense repression reveals a crucial role of the plastidic 2-oxoglutarate/malate translocator DiT1 at the interface between carbon and nitrogen metabolism. Plant J. 45: 206-224 (2006).

Schnorr KM, Juricek M, Huang CX, Culley D, Kleinhofs A. Analysis of barley nitrate reductase cDNA and genomic clones. Mol. Gen. Genet. 227: 411-416 (1991).

Schoenmakers HC, Koornneef M, Alefs SJ, Gerrits WF, van der Kop D, Cherel I, Caboche M. Isolation and characterization of nitrate reductase-deficient mutants in tomato (Lycopersicon esculentum Mill.). Mol. Gen. Genet. 227: 458-464 (1991).

Schondorf T, Hachtel W. The choice of reducing substrate is altered by replacement of an alanine by a proline in the FAD domain of a bispecific NAD(P)H-nitrate reductase from birch. Plant Physiol. 108: 203-210 (1995).

Schroder I, Wolin CD, Cavicchioli R, Gunsalus RP. Phosphorylation and dephosphorylation of the NarQ, NarX, and NarL proteins of the nitrate-dependent two-component regulatory system of Escherichia coli. J. Bacteriol. 176: 4985-4992 (1994).

Schulte M, Von Ballmoos P, Rennenberg H, Herschbach C. Life-long growth of Quercus ilex L. at natural CO2 springs acclimates sulphur, nitrogen and carbohydrate metabolism of the progeny to elevated pCO(2). Plant Cell Environ. 25: 1715-1727 (2002).

Schwartz SH, Leon-Kloosterziel KM, Koornneef M, Zeevaart JA. Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. Plant Physiol. 114: 161-166 (1997).

Schwarz G, Mendel RR. Molybdenum cofactor biosynthesis and molybdenum enzymes. Annu. Rev. Plant Biol. 57: 623-647 (2006).

Searles PS, Bloom AJ. Nitrate photo-assimilation in tomato leaves under short-term exposure to elevated carbon dioxide and low oxygen. Plant Cell Environ. 26: 1247-1255 (2003).

Sears HJ, Little PJ, Richardson DJ, Berks BC, Spiro S, Ferguson SJ. Identification of an assimilatory nitrate reductase in mutants of Paracoccus denitrificans GB17 deficient in nitrate respiration. Arch. Microbiol. 167: 61-66 (1997).

Sears HJ, Sawers G, Berks BC, Ferguson SJ, Richardson DJ. Control of periplasmic nitrate reductase gene expression (napEDABC) from Paracoccus pantotrophus in response to oxygen and carbon substrates. Microbiology 146: 2977-2985 (2000).

Sechley KA, Yamaya T, Oaks A. Compartmentation of nitrogen assimilation in higher plants Int. Rev. Cytol. 134: 85-163 (1992).

Sehnke PC, Ferl RJ. Plant metabolism: enzyme regulation by 14-3-3 proteins. Curr. Biol. 6: 1403-1405 (1996).

Self WT, Grunden AM, Hasona A, Shanmugam KT. Transcriptional regulation of molybdoenzyme synthesis in Escherichia coli in response to molybdenum: ModE-molybdate, a repressor of the modABCD (molybdate transport) operon is a secondary transcriptional activator for the hyc and nar operons. Microbiology 145: 41-55 (1999).

Seligman K, Saviani EE, Oliveira HC, Pinto-Maglio CA, Salgado I. Floral transition and nitric oxide emission during flower development in Arabidopsis thaliana is affected in nitrate reductase-deficient plants. Plant Cell Physiol. 49: 1112-1121 (2008).

Sengupta S, Shaila MS, Rao GR. Purification and characterization of assimilatory nitrite reductase from Candida utilis. Biochem. J. 317: 147-155 (1996).

Sengupta S, Subbarao Shaila M, Rao GR. A novel autophosphorylation mediated regulation of nitrite reductase in Candida utilis. FEBS Lett. 416: 51-56 (1997).

Serrani F, Rossi B, Berardi E. Nitrogen metabolite repression in Hansenda polymorpha: the nmrl-l mutation. Curr. Genet. 40: 243-250 (2001).

Shankar N, Garg SK, Srivastava HS. The influence of low nutrient pH on nitrate assimilation and nitrate reductase activity in maize seedlings. J. Plant Physiol. 156: 678-683 (2000).

Shapiro AD. Nitric oxide signaling in plants. Vitam. Horm. 72: 339-398 (2005).

Sharma P, Dubey RS. Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. J. Plant Physiol. 162: 854-864 (2005).

Sharma V, Noriega CE, Rowe JJ. Involvement of NarK1 and NarK2 proteins in transport of nitrate and nitrite in the denitrifying bacterium Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 72: 695-701 (2006).

Shen W, Clark AC, Huber SC. The C-terminal tail of Arabidopsis 14-3-3omega functions as an autoinhibitor and may contain a tenth alpha-helix. Plant J. 34: 473-484 (2003).

Shen W, Huber SC. Polycations globally enhance binding of 14-3-3{omega} to target proteins in spinach leaves. Plant Cell Physiol. 47: 764-771 (2006).

Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmuller R. The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif… J. Biol. Chem. 280: 26241-26247 (2005).

Sherameti I, Sopory SK, Trebicka A, Pfannschmidt T, Oelmuller R. Photosynthetic electron transport determines nitrate reductase gene expression and activity in higher plants. J. Biol. Chem. 277: 46594-46600 (2002).

Sherman TD, Funkhouser EA. Induction and synthesis of nitrate reductase in Chlorella vulgaris. Arch. Biochem. Biophys. 274: 525-531 (1989).

Shi FM, Li YZ. Verticillium dahliae toxins-induced nitric oxide production in Arabidopsis is major dependent on nitrate reductase. BMB Rep. 41: 79-85 (2008).

Shikama ML, Ferro e Silva R, Villela G, Sato DN, Martins MC, Giampaglia CM, da Silva RF, Ferro e Silva P, da Silva Telles MA, Martin A, Palomino JC. Multicentre study of nitrate reductase assay for rapid detection of rifampicin-resistant M. tuberculosis. Int. J. Tuberc. Lung Dis. 13: 377-380 (2009).

Shiraishi N, Croy C, Kaur J, Campbell WH. Engineering of pyridine nucleotide specificity of nitrate reductase: mutagenesis of recombinant cytochrome b reductase fragment of Neurospora crassa NADPH:nitrate reductase. Arch. Biochem. Biophys. 358: 104-115 (1998).

Sicher RC. Responses of nitrogen metabolism in N-sufficient barley primary leaves to plant growth in elevated atmospheric carbon dioxide. Photosynth. Res. 68: 193-201 (2001).

Sicher RC, Bunce JA. Growth, photosynthesis, nitrogen partitioning and responses to CO2 enrichment in a barley mutant lacking NADH-dependent nitrate reductase activity. Physiol. Plant. 134: 31-40 (2008).

Siddiqi MY, Glass ADM. An evaluation of the evidence for, and implications of, cytoplasmic nitrate homeostasis. Plant Cell Environ. 25: 1211-1217 (2002).

Siddiqui RA, Warnecke-Eberz U, Hengsberger A, Schneider B, Kostka S, Friedrich B. Structure and function of a periplasmic nitrate reductase in Alcaligenes eutrophus H16. J. Bacteriol. 175: 5867-5876 (1993).

Silveira JA, Matos JC, Cecatto VM, Viegas RA, Oliveira JT. Nitrate reductase activity, distribution, and response to nitrate in two contrasting Phaseolus species inoculated with Rhizobium spp. Environ. Exp. Bot. 46: 37-46 (2001).

Simon J, Einsle O, Kroneck PM, Zumft WG. The unprecedented nos gene cluster of Wolinella succinogenes encodes a novel respiratory electron transfer pathway to cytochrome c nitrous oxide reductase. FEBS Lett. 569: 7-12 (2004).

Simon J, Gross R, Einsle O, Kroneck PM, Kroger A, Klimmek O. A NapC/NirT-type cytochrome c (NrfH) is the mediator between the quinone pool and the cytochrome c nitrite reductase of Wolinella succinogenes. Mol. Microbiol. 35: 686-696 (2000).

Simon J, Sanger M, Schuster SC, Gross R. Electron transport to periplasmic nitrate reductase (NapA) of Wolinella succinogenes is independent of a NapC protein. Mol. Microbiol. 49: 69-79 (2003).

Singh B, Chauhan VS, Singh S, Bisen PS. Physiological alterations and regulation of heterocyst and nitrogenase formation in Het(-) Fix(-) mutant strain of Anabaena variabilis. Curr. Microbiol. 45: 315-322 (2002).

Singh B, Usha K. Nodulation and symbiotic nitrogen fixation by genotypes of blackgram [Vigna mungo (L.) Hepper] as affected by fertiliser nitrogen. Aust. J. Agric. Res. 53: 453-457 (2002).

Singh DP, Singh N. Calcium and phosphate regulation of nitrogen metabolism in the cyanobacterium Spirulina platensis under the high light stress. Curr. Microbiol. 41: 368-373 (2000).

Singh J, Singh DK. Ammonium, nitrate and nitrite nitrogen and nitrate reductase enzyme activity in groundnut (Arachis hypogaea L.) fields after diazinon, imidacloprid and lindane treatments. J. Environ. Sci. Health B. 41: 1305-1318 (2006).

Singh N, Ma LQ, Vu JC, Raj A. Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns. Environ. Pollut. 157: 2300-2305 (2009).

Singh RP, Tripathi RD, Dabas S, Rizvi SM, Ali MB, Sinha SK, Gupta DK, Mishra S, Rai UN. Effect of lead on growth and nitrate assimilation of Vigna radiata (L.) Wilczek seedlings in a salt affected environment. Chemosphere 52: 1245-1250 (2003).

Singh S, Chakravarty D, Singh HN. Mutational replacement of molybdenum by vanadium in assimilation of N2 or NO3- as nitrogen source in the cyanobacterium Nostoc muscorum. Biochem. Mol. Biol. Int. 29: 1083-1093 (1993).

Sinnige MP, Roobeek I, Bunney TD, Visser AJ, Mol JN, de Boer AH. Single amino acid variation in barley 14-3-3 proteins leads to functional isoform specificity in the regulation of nitrate reductase. Plant J. 44: 1001-1009 (2005).

Sinnige MP, ten Hoopen P, van den Wijngaard PWJ, Roobeek I, Schoonheim PJ, Mol JNM, de Boer AH. The barley two-pore K+-channel HvKCO1 interacts with 14-3-3 proteins in an isoform specific manner. Plant Sci. 169: 612-619 (2005).

Sivasankar S, Oaks A. Regulation of nitrate reductase during early seedling growth. A role for asparagine and glutamine. Plant Physiol. 107: 1225-1231 (1995).

Sivasankar S, Rastogi R, Jackman L, Oaks A, Rothstein S. Analysis of cis-acting DNA elements mediating induction and repression of the spinach nitrite reductase gene. Planta 206: 66-71 (1998).

Sivasankar S, Rothstein S, Oaks A. Regulation of the accumulation and reduction of nitrate by nitrogen and carbon metabolites in maize seedlings. Plant Physiol. 114: 583-589 (1997).

Siverio J. Assimilation of nitrate by yeasts. FEMS Microbiol. Rev. 26: 277 (2002).

Siverio JM. Assimilation of nitrate by yeasts. FEMS Microbiol. Rev. 26: 277-284 (2002).

Skipper L, Campbell WH, Mertens JA, Lowe DJ. Pre-steady-state kinetic analysis of recombinant Arabidopsis NADH:nitrate reductase: rate-limiting processes in catalysis. J. Biol. Chem. 276: 26995-27002 (2001).

Skovgaard K, Nirenberg HI, O'Donnell K, Rosendahl S. Evolution of Fusarium oxysporum f. sp. vasinfectum races inferred from multigene genealogies. Phytopathology 91: 1231-1237 (2001).

Slocombe SP, Laurie S, Bertini L, Beaudoin F, Dickinson JR, Halford NG. Identification of SnIP1, a novel protein that interacts with SNF1-related protein kinase (SnRK1). Plant Mol.Biol. 49: 31-44 (2002).

Slot JC, Hibbett DS. Horizontal transfer of a nitrate assimilation gene cluster and ecological transitions in fungi: a phylogenetic study. PLoS ONE 2: e1097 (2007).

Smart DR, Bloom AJ. Wheat leaves emit nitrous oxide during nitrate assimilation. Proc. Natl. Acad. Sci. U.S.A. 98: 7875-7878 (2001).

Smith I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin. Microbiol. Rev. 16: 463-498 (2003).

Sodeinde OA, Kindle KL. Homologous recombination in the nuclear genome of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. U.S.A. 90: 9199-9203 (1993).

Sohaskey CD. Regulation of nitrate reductase activity in Mycobacterium tuberculosis by oxygen and nitric oxide. Microbiology 151: 3803-3810 (2005).

Sohaskey CD, Modesti L. Differences in nitrate reduction between Mycobacterium tuberculosis and Mycobacterium bovis are due to differential expression of both narGHJI and narK2. FEMS Microbiol. Lett. 290: 129-134 (2009).

Sohaskey CD, Wayne LG. Role of narK2X and narGHJI in hypoxic upregulation of nitrate reduction by Mycobacterium tuberculosis. J. Bacteriol. 185: 7247-7256 (2003).

Solomonson LP, Barber MJ. Structure-function relationships of algal nitrate reductases. In "Molecular and Genetic Aspects of Nitrate Assimilation" (JL Wray, JR Kinghorn eds) Oxford Science Publications, Oxford, pp. 88-100 (1989).

Song Z, Huang G. Toxic effects of pentachlorophenol on Lemna polyrhiza. Ecotoxicol. Environ. Saf. 66: 343-347 (2007).

Sonoda M, Ide H, Nakayama S, Sasaki A, Kitazaki S, Sato T, Nakagawa H. Cloning of a nitrate reductase inactivator (NRI) cDNA from Spinacia oleracea L. and expression of mRNA and protein of NRI in cultured spinach cells. Planta 216: 961-968 (2003).

Spector MP, Garcia del Portillo F, Bearson SM, Mahmud A, Magut M, Finlay BB, Dougan G, Foster JW, Pallen MJ. The rpos-dependent starvation-stress response locus stiA encodes a nitrate reductase (narZYWV) required for carbon-starvation-inducible thermotolerance and acid tolerance in Salmonella typhimurium. Microbiology 145: 3035-3045 (1999).

Srivastava AC, Pal M, Sengupta UK. Changes in nitrogen metabolism of Vigna radiata in response to elevated CO2. Biol. Plant. 45: 395-399 (2002).

Srivastava N, Gonugunta VK, Puli MR, Raghavendra AS. Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum. Planta 229: 757-765 (2009).

Srivastava S, Dwivedi UN. Modulation of key nitrogen assimilating enzymes by NAA and in vitro culture in Cuscuta reflexa. Plant Physiol. Biochem. 41: 65-71 (2003).

Starkenburg SR, Arp DJ, Bottomley PJ. Expression of a putative nitrite reductase and the reversible inhibition of nitrite-dependent respiration by nitric oxide in Nitrobacter winogradskyi Nb-255. Environ. Microbiol. 10: 3036-3042 (2008).

Starkenburg SR, Larimer FW, Stein LY, Klotz MG, Chain PS, Sayavedra-Soto LA, Poret-Peterson AT, Gentry ME, Arp DJ, Ward B, Bottomley PJ. Complete genome sequence of Nitrobacter hamburgensis X14 and comparative genomic analysis of species within the genus Nitrobacter. Appl. Environ. Microbiol. 74: 2852-2863 (2008).

Stauber EJ, Fink A, Markert C, Kruse O, Johanningmeier U, Hippler M. Proteomics of Chlamydomonas reinhardtii light-harvesting proteins. Eukaryot. Cell 2: 978-994 (2003).

Steenhoudt O, Keijers V, Okon Y, Vanderleyden J. Identification and characterization of a periplasmic nitrate reductase in Azospirillum brasilense Sp245. Arch. Microbiol. 175: 344-352 (2001).

Steffen D, Doring O, Busch MA, Bottger M, Luthje S. Interaction between electron transport at the plasma membrane and nitrate uptake by maize (Zea mays L.) roots. Protoplasma 217: 70-76 (2001).

Stephens JL, Brown SE, Lapitan NLV, Knudson DL. Physical mapping of barley genes using an ultrasensitive fluorescence in situ hybridization technique. Genome 47: 179-189 (2004).

Stermann M, Bohrssen A, Diephaus C, Maass S, Bange FC. Polymorphic nucleotide within the promoter of nitrate reductase (NarGHJI) is specific for Mycobacterium tuberculosis. J. Clin. Microbiol. 41: 3252-3259 (2003).

Stermann M, Sedlacek L, Maass S, Bange FC. A promoter mutation causes differential nitrate reductase activity of Mycobacterium tuberculosis and Mycobacterium bovis. J. Bacteriol. 186: 2856-2861 (2004).

Stevenson CE, Sargent F, Buchanan G, Palmer T, Lawson DM. Crystal structure of the molybdenum cofactor biosynthesis protein MobA from Escherichia coli at near-atomic resolution. Structure Fold. Des. 8: 1115-1125 (2000).

Stewart V. Nitrate regulation of anaerobic respiratory gene expression in Escherichia coli. Mol. Microbiol. 9: 425-434 (1993).

Stewart V. Regulation of nitrate and nitrite reductase synthesis in enterobacteria. Antonie Van Leeuwenhoek 66: 37-45 (1994).

Stewart V. Nitrate- and nitrite-responsive sensors NarX and NarQ of proteobacteria. Biochem. Soc. Trans. 31: 1-10 (2003).

Stewart V, Bledsoe PJ. Fnr-, NarP- and NarL-dependent regulation of transcription initiation from the Haemophilus influenzae Rd napF (periplasmic nitrate reductase) promoter in Escherichia coli K-12. J. Bacteriol. 187: 6928-6935 (2005).

Stewart V, Bledsoe PJ, Chen LL, Cai A. Catabolite repression control of napF (periplasmic nitrate reductase) operon expression in Escherichia coli K-12. J. Bacteriol. 191: 996-1005 (2009).

Stewart V, Bledsoe PJ, Williams SB. Dual overlapping promoters control napF (periplasmic nitrate reductase) operon expression in Escherichia coli K-12. J. Bacteriol. 185: 5862-5870 (2003).

Stewart V, Cali BM. Genetic evidence that NarL function is not required for nitrate regulation of nitrate assimilation in Klebsiella pneumoniae M5al. J. Bacteriol. 172: 4482-4488 (1990).

Stewart V, Lu Y, Darwin AJ. Periplasmic nitrate reductase (NapABC enzyme) supports anaerobic respiration by Escherichia coli K-12. J. Bacteriol. 184: 1314-1323 (2002).

Stewart V, Parales J Jr, Merkel SM. Structure of genes narL and narX of the nar (nitrate reductase) locus in Escherichia coli K-12. J. Bacteriol. 171: 2229-2234 (1989).

Stitt M, Krapp A. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ. 22: 583-621 (1999).

Stitt M, Muller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible WR, Krapp A. Steps towards an integrated view of nitrogen metabolism. J. Exp. Bot. 53: 959-970 (2002).

Stohr C. Relationship of nitrate supply with growth rate, plasma membrane-bound and cytosolic nitrate reductase, and tissue nitrate content in tobacco plants. Plant Cell Environ. 22: 169-177 (1999).

Stohr C, Mack G. Diurnal changes in nitrogen assimilation of tobacco roots. J. Exp. Bot. 52: 1283-1289 (2001).

Stohr C, Stremlau S. Formation and possible roles of nitric oxide in plant roots. J. Exp. Bot. 57: 463-470 (2006).

Stohr C, Strube F, Marx G, Ullrich WR, Rockel P. A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212: 835-841 (2001).

Stohr C, Ullrich WR. A succinate-oxidising nitrate reductase is located at the plasma membrane of plant roots. Planta 203: 129-132 (1997).

Stolz JF, Basu P. Evolution of nitrate reductase: molecular and structural variations on a common function. Chembiochem. 3: 198-206 (2002).

Stouthamer AH. Metabolic pathways in Paracoccus denitrificans and closely related bacteria in relation to the phylogeny of prokaryotes. Antonie Van Leeuwenhoek 61: 1-33 (1992).

Stouthamer AH, de Boer AP, van der Oost J, van Spanning RJ. Emerging principles of inorganic nitrogen metabolism in Paracoccus denitrificans and related bacteria. Antonie Van Leeuwenhoek 71: 33-41 (1997).

Straffon MJ, Hynes MJ, Davis MA. Characterization of the ugatA gene of Ustilago maydis, isolated by homology to the gatA gene of Aspergillus nidulans. Curr. Genet. 29: 360-369 (1996).

Su W, Huber SC, Crawford NM. Identification in vitro of a post-translational regulatory site in the hinge 1 region of Arabidopsis nitrate reductase. Plant Cell 8: 519-527 (1996).

Su W, Mertens JA, Kanamaru K, Campbell WH, Crawford NM. Analysis of wild-type and mutant plant nitrate reductase expressed in the methylotrophic yeast Pichia pastoris. Plant Physiol. 115: 1135-1143 (1997).

Sueyoshi K, Kleinhofs A, Warner RL. Expression of NADH-specific and NAD(P)H-bispecific nitrate reductase genes in response to nitrate in barley. Plant Physiol. 107: 1303-1311 (1995).

Sugden C, Donaghy PG, Halford NG, Grahame Hardie D. Two SNF1-related protein kinases from spinach leaf phosphorylate and inactivate 3-hydroxy-3-methylglutaryl-coenzyme A reductase, nitrate reductase, and sucrose phosphate synthase in vitro. Plant Physiol. 120: 257-274 (1999).

Sun J, Zhang XJ, Broderick M, Fein H. Measurement of nitric oxide production in biological systems by using Griess Reaction assay. Sensors 3: 276-284 (2003).

Sun Y, Gao X, Li Q, Zhang Q, Xu Z. Functional complementation of a nitrate reductase defective mutant of a green alga Dunaliella viridis by introducing the nitrate reductase gene. Gene 377: 140-149 (2006).

Suzuki I, Horie N, Sugiyama T, Omata T. Identification and characterization of two nitrogen-regulated genes of the cyanobacterium Synechococcus sp. strain PCC7942 required for maximum efficiency of nitrogen assimilation. J. Bacteriol. 177: 290-296 (1995).

Suzuki I, Kikuchi H, Nakanishi S, Fujita Y, Sugiyama T, Omata T. A novel nitrite reductase gene from the cyanobacterium Plectonema boryanum. J. Bacteriol. 177: 6137-6143 (1995).

Suzuki I, Sugiyama T, Omata T. Regulation of nitrite reductase activity under CO2 limitation in the cyanobacterium Synechococcus sp. PCC7942. Plant Physiol. 107: 791-796 (1995).

Suzuki I, Sugiyami T, Omata T. Regulation by cyanate of the genes involved in carbon and nitrogen assimilation in the cyanobacterium Synechococcus sp. strain PCC 7942. J. Bacteriol. 178: 2688-2694 (1996).

Swiedrych A, Prescha A, Matysiak-Kata I, Biernat J, Szopa J. Repression of the 14-3-3 gene affects the amino acid and mineral composition of potato tubers. J. Agric. Food Chem. 50: 2137-2141 (2002).

Sykorova B, Kuresova G, Daskalova S, Trckova M, Hoyerova K, Raimanova I, Motyka V, Travníckova A, Elliott MC, Kamínek M. Senescence-induced ectopic expression of the A. tumefaciens ipt gene in wheat delays leaf senescence, increases cytokinin content, nitrate influx, and nitrate reductase activity, but does not affect grain yield. J. Exp. Bot. 59: 377-387 (2008).

Szopa J. Transgenic 14-3-3 isoforms in plants: the metabolite profiling of repressed 14-3-3 protein synthesis in transgenic potato plants. Biochem. Soc. Trans. 30: 405-410 (2002).

Takada K, Naal Z, Park JH, Shapleigh JP, Bernhard S, Batt CA, Abruna HD. Study of specific binding of maltose binding protein to pyrrole-derived bipyridinium film by quartz crystal microbalance. Langmuir 18: 4892-4897 (2002).

Takahashi K, Hattori T, Shindo H, Noji S, Nohno T, Taniguchi S. Studies on phosphorylated transcriptional regulator (NarL) for E. coli nar operon by 31P-NMR spectroscopy. Biochem. Mol. Biol. Int. 31: 161-168 (1993).

Takahashi M, Sasaki Y, Ida S, Morikawa H. Nitrite reductase gene enrichment improves assimilation of NO(2) in Arabidopsis. Plant Physiol. 126: 731-741 (2001).

Takahashi Y, Fukazawa J, Matushita A, Ishida S. Involvement of RSG and 14-3-3 proteins in the transcriptional regulation of a GA biosynthetic gene. J. Plant Growth Regul. 22: 195-204 (2003).

Takasaki K, Shoun H, Nakamura A, Hoshino T, Takaya N. Unusual transcription regulation of the niaD gene under anaerobic conditions supporting fungal ammonia fermentation. Biosci. Biotechnol. Biochem. 68: 978-980 (2004).

Takatani N, Kobayashi M, Maeda S, Omata T. Regulation of nitrate reductase by non-modifiable derivatives of PII in the cells of Synechococcus elongatus strain PCC 7942. Plant Cell Physiol. 47: 1182-1186 (2006).

Takatani N, Omata T. Effects of PII deficiency on expression of the genes involved in ammonium utilization in the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Cell Physiol. 47: 679-688 (2006).

Takaya N. Response to hypoxia, reduction of electron acceptors, and subsequent survival by filamentous fungi. Biosci. Biotechnol. Biochem. 73: 1-8 (2009).

Takaya N. Dissimilatory nitrate reduction metabolisms and their control in fungi. J. Biosci. Bioeng. 94: 506-510 (2002).

Takii S, Hanada S, Hase Y, Tamaki H, Uyeno Y, Sekiguchi Y, Matsuura K. Desulfovibrio marinisediminis sp. nov., a novel sulfate-reducing bacterium isolated from coastal marine sediment via enrichment with Casamino acids. Int. J. Syst. Evol. Microbiol. 58: 2433-2438 (2008).

Tamura N, Takahashi H, Takeba G, Satoi T, Nakagawa H. The nitrate reductase gene isolated from DNA of cultured spinach cells. Biochim. Biophys. Acta 1338: 151-155 (1997).

Tanapongpipat S, Reid E, Cole JA, Crooke H. Transcriptional control and essential roles of the Escherichia coli ccm gene products in formate-dependent nitrite reduction and cytochrome c synthesis. Biochem. J. 334: 355-365 (1998).

Taniguchi M, Taniguchi Y, Kawasaki M, Takeda S, Kato T, Sato S, Tabata S, Miyake H, Sugiyama T. Identifying and characterizing plastidic 2-oxoglutarate/malate and dicarboxylate transporters in Arabidopsis thaliana. Plant Cell Physiol. 43: 706-717 (2002).

Tao Y, Marzluf GA. Analysis of a distal cluster of binding elements and other unusual features of the promoter of the highly regulated nit-3 gene of Neurospora crassa. Biochemistry 37: 11136-11142 (1998).

Taoka A, Yoshimatsu K, Kanemori M, Fukumori Y. Nitrate reductase from the magnetotactic bacterium Magnetospirillum magnetotacticum MS-1: purification and sequence analyses. Can. J. Microbiol. 49: 197-206 (2003).

Tarakcioglu C, Inal A. Changes induced by salinity, demarcating specific ion ratio (Na/Cl) and osmolality in ion and proline accumulation, nitrate reductase activity, and growth performance of lettuce. J. Plant Nutr. 25: 27-41 (2002).

Tarasova NB, Petrova OE, Davydova MN, Khairutdinov BI, Klochkov VV. Changes in the nitrocellulose molecule induced by sulfate-reducing bacteria Desulfovibrio desulfuricans 1,388. The enzymes participating in this process. Biochemistry (Mosc.) 69: 809-812 (2004).

Tate R, Riccio A, Iaccarino M, Patriarca EJ. A cysG mutant strain of Rhizobium etli pleiotropically defective in sulfate and nitrate assimilation. J. Bacteriol. 179: 7343-7350 (1997).

Taylor CJ, Bain LA, Richardson DJ, Spiro S, Russell DA. Construction of a whole-cell gene reporter for the fluorescent bioassay of nitrate. Anal. Biochem. 328: 60-66 (2004).

Taylor NJ, Cowan AK. Xanthine dehydrogenase and aldehyde oxidase impact plant hormone homeostasis and affect fruit size in 'Hass' avocado. J. Plant Res. 117: 121-130 (2004).

Tegoni M, Silvestrini MC, Lamzin VS, Brunori M, Cambillau C. Crystallization and preliminary X-ray analysis of a new crystal form of nitrite reductase from Pseudomonas aeruginosa. J. Mol. Biol. 243: 347-350 (1994).

Tejada-Jimenez M, Llamas A, Sanz-Luque E, Galvan A, Fernandez E. A high-affinity molybdate transporter in eukaryotes. Proc. Natl. Acad. Sci. U.S.A. 104: 20126-20130 (2007).

Temple SJ, Vance CP, Gantt JS. Glutamate synthase and nitrogen assimilation. Trends Plant Sci. 3: 51-56 (1998).

Terada Y, Aoki H, Tanaka T, Morikawa H, Ida S. Cloning and nucleotide sequence of a leaf ferredoxin-nitrite reductase cDNA of rice. Biosci. Biotechnol. Biochem. 59: 2183-2185 (1995).

Terce-Laforgue T, Mack G, Hirel B. New insights towards the function of glutamate dehydrogenase revealed during source-sink transition of tobacco (Nicotiana tabacum) plants grown under different nitrogen regimes. Physiol. Plant. 120: 220-228 (2004).

Thapper A, Behrens A, Fryxelius J, Johansson MH, Prestopino F, Czaun M, Rehder D, Nordlander E. Synthesis and characterization of molybdenum oxo complexes of two tripodal ligands: reactivity studies of a functional model for molybdenum oxotransferases. Dalton Trans. 21: 3566-3571 (2005).

Thauer RK, Shima S. Methane as fuel for anaerobic microorganisms. Ann. N. Y. Acad. Sci. 1125: 158-170 (2008).

Thiel T, Pratte B, Zahalak M. Transport of molybdate in the cyanobacterium Anabaena variabilis ATCC 29413. Arch. Microbiol. 179: 50-56 (2002).

Thomas G, Potter L, Cole JA. The periplasmic nitrate reductase from Escherichia coli: a heterodimeric molybdoprotein with a double-arginine signal sequence and an unusual leader peptide cleavage site. FEMS Microbiol. Lett. 174: 167-171 (1999).

Tikhonova TV, Slutsky A, Antipov AN, Boyko KM, Polyakov KM, Sorokin DY, Zvyagilskaya RA, Popov VO. Molecular and catalytic properties of a novel cytochrome c nitrite reductase from nitrate-reducing haloalkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio nitratireducens. Biochim. Biophys. Acta. 1764: 715-723 (2006).

Tirado J-L, Conejero G, Robin P. Comparaison des activites glutamine synthetase, glutamate deshydrogenase et nitrate reductase chez Glycine max. Effet de l'obscurite sur la premiere feuille trifoliee. Plant Physiol. Biochem. 28: 251-257 (1990).

Tischner R. Nitrate uptake and reduction in higher and lower plants. Plant Cell Environ. 23: 1005-1024 (2000).

Tischner R, Planchet E, Kaiser WM. Mitochondrial electron transport as a source for nitric oxide in the unicellular green alga Chlorella sorokiniana. FEBS Lett. 576: 151-155 (2004).

Tocquin P, Corbesier L, Havelange A, Pieltain A, Kurtem E, Bernier G, Perilleux C. A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana. BMC Plant Biol. 3: 2 (2003).

Toroser D, Huber SC. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase kinase and sucrose-phosphate synthase kinase activities in cauliflower florets: Ca2+ dependence and substrate specificities. Arch. Biochem. Biophys. 355: 291-300 (1998).

Tran QH, Arras T, Becker S, Holighaus G, Ohlberger G, Unden G. Role of glutathione in the formation of the active form of the oxygen sensor FNR ([4Fe-4S].FNR) and in the control of FNR function. Eur. J. Biochem. 267: 4817-4824 (2000).

Trimboli AJ, Barber MJ. Assimilatory nitrate reductase: reduction and inhibition by NADH/NAD+ analogs. Arch. Biochem. Biophys. 315: 48-53 (1994).

Trimboli AJ, Quinn GB, Smith ET, Barber MJ. Thiol modification and site directed mutagenesis of the flavin domain of spinach NADH:nitrate reductase. Arch. Biochem. Biophys. 331: 117-126 (1996).

Tripathi AK, Gautam M. Biochemical parameters of plants as indicators of air pollution. J. Environ. Biol. 28: 127-132 (2007).

Tripathi BN, Gaur JP. Physiological behavior of Scenedesmus sp. during exposure to elevated levels of Cu and Zn and after withdrawal of metal stress. Protoplasma 229: 1-9 (2006).

Truong HN, Caboche M, Daniel-Vedele F. The tomato nia gene promoter functions in fission yeast but not in budding yeast. Plant Mol. Biol. 20: 361-364 (1992).

Truong HN, Meyer C, Daniel-Vedele F. Characteristics of Nicotiana tabacum nitrate reductase protein produced in Saccharomyces cerevisiae. Biochem. J. 278: 393-397 (1991).

Tsai CB, Kaiser WM, Kaldenhoff R. Molecular cloning and characterization of nitrate reductase from Ricinus communis L. heterologously expressed in Pichia pastoris. Planta 217: 962-970 (2003).

Tschoep H, Gibon Y, Carillo P, Armengaud P, Szecowka M, Nunes-Nesi A, Fernie AR, Koehl K, Stitt M. Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis. Plant Cell Environ. 32: 300-318 (2009).

Tucker DE, Allen DJ, Ort DR. Control of nitrate reductase by circadian and diurnal rhythms in tomato. Planta 219: 277-285 (2004).

Tucker DE, Ort DR. Low temperature induces expression of nitrate reductase in tomato that temporarily overrides circadian regulation of activity. Photosynth. Res. 72: 285-293 (2002).

Tudzynski B, Mende K, Weltring KM, Kinghorn JR, Unkles SE. The Gibberella fujikuroi niaD gene encoding nitrate reductase: isolation, sequence, homologous transformation and electrophoretic karyotype location. Microbiology 142: 533-539 (1996).

Tun NN, Livaja M, Kieber JJ, Scherer GF. Zeatin-induced nitric oxide (NO) biosynthesis in Arabidopsis thaliana mutants of NO biosynthesis and of two-component signaling genes. New Phytol. 178: 515-531 (2008).

Turetsky MR. The role of bryophytes in carbon and nitrogen cycling. Bryologist 106: 395-409 (2003).

Tyagi R, Kumar A, Tyagi MB, Jha PN, Kumar HD, Sinha RP, Hader DP. Protective role of certain chemicals against UV-B-induced damage in the nitrogen-fixing cyanobacterium, Nostoc muscorum. J. Basic Microbiol. 43: 137-147 (2003).

Tyson K, Metheringham R, Griffiths L, Cole J. Characterisation of Escherichia coli K-12 mutants defective in formate-dependent nitrite reduction: essential roles for hemN and the menFDBCE operon. Arch. Microbiol. 168: 403-411 (1997).

Tyson KL, Cole JA, Busby SJ. Nitrite and nitrate regulation at the promoters of two Escherichia coli operons encoding nitrite reductase: identification of common target heptamers for both NarP- and NarL-dependent regulation. Mol. Microbiol. 13: 1045-1055 (1994).

Uchimura H, Enjoji H, Seki T, Taguchi A, Takaya N, Shoun H. Nitrate reductase-formate dehydrogenase couple involved in the fungal denitrification by Fusarium oxysporum. J. Biochem. 131: 579-586 (2002).

Udvardi MK, Lister DL, Day DA. Isolation and characterization of a ntrC mutant of Bradyrhizobium (Parasponia) sp. ANU289. J. Gen. Microbiol. 138: 1019-1025 (1992).

Unden G, Achebach S, Holighaus G, Tran HG, Wackwitz B, Zeuner Y. Control of FNR function of Escherichia coli by O2 and reducing conditions. J. Mol. Microbiol. Biotechnol. 4: 263-268 (2002).

Unkles SE, Campbell EI, Punt PJ, Hawker KL, Contreras R, Hawkins AR, Van den Hondel CA, Kinghorn JR. The Aspergillus niger niaD gene encoding nitrate reductase: upstream nucleotide and amino acid sequence comparisons. Gene 111: 149-155 (1992).

Unkles SE, Hawker KL, Grieve C, Campbell EI, Montague P, Kinghorn JR. crnA encodes a nitrate transporter in Aspergillus nidulans. Proc. Natl. Acad. Sci. U.S.A. 88: 204-208 (1991).

Unkles SE, Heck IS, Appleyard MV, Kinghorn JR. Eukaryotic molybdopterin synthase. Biochemical and molecular studies of Aspergillus nidulans cnxG and cnxH mutants. J. Biol. Chem. 274: 19286-19293 (1999).

Unkles SE, Smith J, Kanan GJ, Millar LJ, Heck IS, Boxer DH, Kinghorn JR. The Aspergillus nidulans cnxABC locus is a single gene encoding two catalytic domains required for synthesis of precursor Z, an intermediate in molybdenum cofactor biosynthesis. J. Biol. Chem. 272: 28381-28390 (1997).

Unkles SE, Wang R, Wang Y, Glass AD, Crawford NM, Kinghorn JR. Nitrate reductase activity is required for nitrate uptake into fungal but not plant cells. J. Biol. Chem. 279: 28182-28186 (2004).

Valadier MH, Yoshida A, Grandjean O, Morin H, Kronenberger J, Boutet S, Raballand A, Hase T, Yoneyama T, Suzuki A. Implication of the glutamine synthetase/glutamate synthase pathway in conditioning the amino acid metabolism in bundle sheath and mesophyll cells of maize leaves. FEBS J. 275: 3193-3206 (2008).

Vallano DM, Sparks JP. Quantifying foliar uptake of gaseous nitrogen dioxide using enriched foliar delta15N values. New Phytol. 177: 946-955 (2008).

van Dillewijn P, Wittich RM, Caballero A, Ramos JL. Type II hydride transferases from different microorganisms yield nitrite and diarylamines from polynitroaromatic compounds. Appl. Environ. Microbiol. 74: 6820-6823 (2008).

van Keulen G, Alderson J, White J, Sawers RG. Nitrate respiration in the actinomycete Streptomyces coelicolor. Biochem. Soc. Trans. 33: 210-212 (2005).

Van Spanning RJ, De Boer AP, Reijnders WN, Spiro S, Westerhoff HV, Stouthamer AH, Van der Oost J. Nitrite and nitric oxide reduction in Paracoccus denitrificans is under the control of NNR, a regulatory protein that belongs to the FNR family of transcriptional activators. FEBS Lett. 360: 151-154 (1995).

Van Spanning RJ, De Boer AP, Reijnders WN, Westerhoff HV, Stouthamer AH, Van Der Oost J. FnrP and NNR of Paracoccus denitrificans are both members of the FNR family of transcriptional activators but have distinct roles in respiratory adaptation in response to oxygen limitation. Mol. Microbiol. 23: 893-907 (1997).

van Wijk DJ, Kroon SG, Garttener-Arends IC. Toxicity of chlorate and chlorite to selected species of algae, bacteria, and fungi. Ecotoxicol. Environ. Saf. 40: 206-211 (1998).

van Zeijl MJ, Testerink C, Kijne JW, Wang M. Subcellular differences in post-translational modification of barley 14-3-3 proteins. FEBS Lett. 473: 292-296 (2000).

Varisi VA, Camargos LS, Aguiar LF, Christofoleti RM, Medici LO, Azevedo RA. Lysine biosynthesis and nitrogen metabolism in quinoa (Chenopodium quinoa): study of enzymes and nitrogen-containing compounds. Plant Physiol. Biochem. 46: 11-18 (2008).

Vaucheret H, Kronenberger J, Lepingle A, Vilaine F, Boutin JP, Caboche M. Inhibition of tobacco nitrite reductase activity by expression of antisense RNA. Plant J. 2: 559-569 (1992).

Vaucheret H, Marion-Poll A, Meyer C, Faure JD, Marin E, Caboche M. Interest in and limits to the utilization of reporter genes for the analysis of transcriptional regulation of nitrate reductase. Mol. Gen. Genet. 235: 259-268 (1992).

Vaucheret H, Nussaume L, Palauqui JC, Quillere I, Elmayan T. A transcriptionally active state is required for post-transcriptional silencing (cosuppression) of nitrate reductase host genes and transgenes. Plant Cell 9: 1495-1504 (1997).

Vaucheret H, Palauqui JC, Elmayan T, Moffatt B. Molecular and genetic analysis of nitrite reductase co-suppression in transgenic tobacco plants. Mol. Gen. Genet. 248: 311-317 (1995).

Vaucheret H, Vincentz M, Kronenberger J, Caboche M, Rouze P. Molecular cloning and characterisation of the two homologous genes coding for nitrate reductase in tobacco. Mol. Gen. Genet. 216: 10-15 (1989).

Vazquez-Bermudez MF, Herrero A, Flores E. Carbon supply and 2-oxoglutarate effects on expression of nitrate reductase and nitrogen-regulated genes in Synechococcus sp. strain PCC 7942. FEMS Microbiol. Lett. 221: 155-159 (2003).

Vega-Palas MA, Madueno F, Herrero A, Flores E. Identification and cloning of a regulatory gene for nitrogen assimilation in the cyanobacterium Synechococcus sp. strain PCC 7942. J. Bacteriol. 172: 643-647 (1990).

Veldman R, Reijnders WN, van Spanning RJ. Specificity of FNR-type regulators in Paracoccus denitrificans. Biochem. Soc. Trans. 34: 94-96 (2006).

Vergnes A, Gouffi-Belhabich K, Blasco F, Giordano G, Magalon A. Involvement of the molybdenum cofactor biosynthetic machinery in the maturation of the Escherichia coli nitrate reductase A. J. Biol. Chem. 279: 41398-41403 (2004).

Vergnes A, Pommier J, Toci R, Blasco F, Giordano G, Magalon A. NarJ chaperone binds on two distinct sites of the aponitrate reductase of Escherichia coli to coordinate molybdenum cofactor insertion and assembly. J. Biol. Chem. 281: 2170-2176 (2006).

Vidmar JJ, Schjoerring JK, Touraine B, Glass AD. Regulation of the hvst1 gene encoding a high-affinity sulfate transporter from Hordeum vulgare. Plant Mol. Biol. 40: 883-892 (1999).

Vidmar JJ, Zhuo D, Siddiqi MY, Schjoerring JK, Touraine B, Glass AD. Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen pools in roots of barley. Plant Physiol. 123: 307-318 (2000).

Viktor A, Cramer MD. The influence of root assimilated inorganic carbon on nitrogen acquisition/assimilation and carbon partitioning. New Phytol. 165: 157-169 (2005).

Vincentz M, Moureaux T, Leydecker MT, Vaucheret H, Caboche M. Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites. Plant J. 3: 315-324 (1993).

Vollack KU, Xie J, Hartig E, Romling U, Zumft WG. Localization of denitrification genes on the chromosomal map of Pseudomonas aeruginosa. Microbiology 144: 441-448 (1998).

Wallace W. Comparison of a nitrate reductase-inactivating enzyme from the maize root with a protease form yeast which inactivates tryptophan synthase. Biochim. Biophys. Acta 524: 418-427 (1978).

Wang H, McCaig TN, DePauw RM, Clarke FR, Clarke JM. Physiological characteristics of recent Canada Western Red Spring wheat cultivars: Components of grain nitrogen yield. Can. J. Plant Sci. 83: 699-707 (2003).

Wang JJ, Tessier C, Holm RH. Analogue reaction systems of selenate reductase. Inorg. Chem. 45: 2979-2988 (2006).

Wang L, Zhou Q, Ding L, Sun Y. Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. J. Hazard. Mater. 154: 818-825 (2008).

Wang LQ, Wang Y, Dong Y, Wang WB. Induced activity of nitrate reductase by nitrate and cloning of nitrate reductase gene. Sheng Wu Gong Cheng Xue Bao 19: 632-635 (2003).

Wang P, Sun YR, Li X, Zhang LM, Li WB, Wang YQ. Rapid isolation and functional analysis of promoter sequences of the nitrate reductase gene from Chlorella ellipsoidea. J. Appl. Phycol. 16: 11-16 (2004).

Wang P, Wang YQ, Geng DG, Li WB, Sun YR. Molecular cloning and characterization of a cDNA encoding nitrate reductase from Chlorella ellipsoidea (Chlorophyta). J. Appl. Phycol. 15: 457-463 (2003).

Wang R, Guegler K, LaBrie ST, Crawford NM. Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12: 1491-1510 (2000).

Wang R, Okamoto M, Xing X, Crawford NM. Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol. 132: 556-567 (2003).

Wang R, Tischner R, Gutierrez RA, Hoffman M, Xing X, Chen M, Coruzzi G, Crawford NM. Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiol. 136: 2512-2522 (2004).

Wang TH, Fu HY, Shieh YJ. Monomeric NarB is a dual-affinity nitrate reductase, and its activity is regulated differently from that of nitrate uptake in the unicellular diazotrophic cyanobacterium Synechococcus sp strain RF-1. J. Bacteriol. 185: 5838-5846 (2003).

Wang W, Zhang W, Lu J, Yang Y, Chiao J, Zhao G, Jiang W. MoeA, an enzyme in the molybdopterin synthesis pathway, is required for rifamycin SV production in Amycolatopsis mediterranei U32. Appl. Microbiol. Biotechnol. 60: 139-146 (2002).

Wang Y, Li W, Siddiqi Y, Kinghorn JR, Unkles SE, Glass AD. Evidence for post-translational regulation of NrtA, the Aspergillus nidulans high-affinity nitrate transporter. New Phytol. 175: 699-706 (2007).

Wang YH, Garvin DF, Kochian LV. Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol. 127: 345-359 (2001).

Ward MP, Abberton MT, Forde BG, Sherman A, Thomas WT, Wray JL. The Nir1 locus in barley is tightly linked to the nitrite reductase apoprotein gene Nii. Mol. Gen. Genet. 247: 579-582 (1995).

Ward MR, Tischner R, Huffaker RC. Inhibition of nitrate transport by anti-nitrate reductase IgG fragments and the identification of plasma membrane associated nitrate reductase in roots of barley seedlings. Plant Physiol. 88: 1141-1145 (1988).

Warner RL, Kleinhofs A, Narayanan KR. Genetics, biochemistry and physiology of nitrate reductase-deficient mutants in barley. In "Exploitation of Physiological and Genetic Variability to Enhance Crop Productivity" (JE Harper, LE Schrader, RW Howell eds), American Society of Plant Physiologists, Waverly Press, Baltimore, Maryland, pp. 23-30 (1985).

Warning HO, Hachtel W. Functional analysis of a nitrite reductase promoter from birch in transgenic tobacco. Plant Sci. 155: 141-151 (2000).

Watts CA, Ridley H, Condie KL, Leaver JT, Richardson DJ, Butler CS. Selenate reduction by Enterobacter cloacae SLD1a-1 is catalysed by a molybdenum-dependent membrane-bound enzyme that is distinct from the membrane- bound nitrate reductase. FEMS Microbiol. Lett. 228: 273-279 (2003).

Watts CA, Ridley H, Dridge EJ, Leaver JT, Reilly AJ, Richardson DJ, Butler CS. Microbial reduction of selenate and nitrate: common themes and variations. Biochem. Soc. Trans. 33: 173-175 (2005).

Weelink SA, Tan NC, Ten Broeke H, van den Kieboom C, van Doesburg W, Langenhoff AA, Gerritse J, Junca H, Stams AJ. Isolation and characterization of Alicycliphilus denitrificans strain BC that grows on benzene with chlorate as electron acceptor. Appl. Environ. Microbiol. 74: 6672-6681 (2008).

Wei X, Ming LJ, Cannons AC, Solomonson LP. 1H and 13C NMR studies of a truncated heme domain from Chlorella vulgaris nitrate reductase: signal assignment of the heme moiety. Biochim. Biophys. Acta 1382: 129-136 (1998).

Weiner H, Kaiser WM. Antibodies to assess phosphorylation of spinach leaf nitrate reductase on serine 543 and its binding to 14-3-3 proteins. J. Exp. Bot. 52: 1165-1172 (2001).

Weiner H, Kaiser WM. 14-3-3 proteins control proteolysis of nitrate reductase in spinach leaves. FEBS Lett. 455: 75-78 (1999).

Weiner H, Kaiser WM. Binding to 14-3-3 proteins is not sufficient to inhibit nitrate reductase in spinach leaves. FEBS Lett. 480: 217-220 (2000).

Weiss B. Evidence for mutagenesis by nitric oxide during nitrate metabolism in Escherichia coli. J. Bacteriol. 188: 829-833 (2006).

Whitehead MP, Gurr SJ, Grieve C, Unkles SE, Spence D, Ramsden M, Kinghorn JR. Homologous transformation of Cephalosporium acremonium with the nitrate reductase-encoding gene (niaD). Gene 90: 193-198 (1990).

Wienkoop S, Schlichting R, Ullrich WR, Stohr C. Different diurnal cycles of expression of two nitrate reductase transcripts in tobacco roots. Protoplasma 217: 15-19 (2001).

Wilkinson JQ, Crawford NM. Identification and characterization of a chlorate-resistant mutant of Arabidopsis thaliana with mutations in both nitrate reductase structural genes NIA1 and NIA2. Mol. Gen. Genet. 239: 289-297 (1993).

Wilkinson JQ, Crawford NM. Identification of the Arabidopsis CHL3 gene as the nitrate reductase structural gene NIA2. Plant Cell 3: 461-471 (1991).

Williams RS, Davis MA, Howlett BJ. The nitrate and nitrite reductase-encoding genes of Leptosphaeria maculans are closely linked and transcribed in the same direction. Gene 158: 153-154 (1995).

Williams RS, Davis MA, Howlett BJ. Nitrate reductase of the ascomycetous fungus, Leptosphaeria maculans: gene sequence and chromosomal location. Mol. Gen. Genet. 244: 1-8 (1994).

Wilson ID, Neill SJ, Hancock JT. Nitric oxide synthesis and signalling in plants. Plant Cell Environ. 31: 622-631 (2008).

Witte CP, Igeno MI, Mendel R, Schwarz G, Fernandez E. The Chlamydomonas reinhardtii MoCo carrier protein is multimeric and stabilizes molybdopterin cofactor in a molybdate charged form. FEBS Lett. 431: 205-209 (1998).

Wolterink AF, Jonker AB, Kengen SW, Stams AJ. Pseudomonas chloritidismutans sp. nov., a non-denitrifying, chlorate-reducing bacterium. Int. J. Syst. Evol. Microbiol. 52: 2183-2190 (2002).

Wood NJ, Alizadeh T, Bennett S, Pearce J, Ferguson SJ, Richardson DJ, Moir JW. Maximal expression of membrane-bound nitrate reductase in Paracoccus is induced by nitrate via a third FNR-like regulator named NarR. J. Bacteriol. 183: 3606-3613 (2001).

Wood NJ, Alizadeh T, Richardson DJ, Ferguson SJ, Moir JWB. Two domains of a dual-function NarK protein are required for nitrate uptake, the first step of denitrification in Paracoccus pantotrophus. Mol. Microbiol. 44: 157-170 (2002).

Wu LF, Mandrand-Berthelot MA, Waugh R, Edmonds CJ, Holt SE, Boxer DH. Nickel deficiency gives rise to the defective hydrogenase phenotype of hydC and fnr mutants in Escherichia coli. Mol. Microbiol. 3: 1709-1718 (1989).

Wu Q, Knowles R. Cellular regulation of nitrate uptake in denitrifying Flexibacter canadensis. Can. J. Microbiol. 40: 576-582 (1994).

Wu S, Lu Q, Kriz AL, Harper JE. Identification of cDNA clones corresponding to two inducible nitrate reductase genes in soybean: analysis in wild-type and nr1 mutant. Plant Mol. Biol. 29: 491-506 (1995).

Wu SJ, Qi JL, Zhang WJ, Liu SH, Xiao FH, Zhang MS, Xu GH, Zhao WG, Shi MW, Pang YJ, Shen HG, Yang YH. Nitric oxide regulates shikonin formation in suspension cultured Onosma paniculatum cells. Plant Cell Physiol. 50: 118-128 (2009).

Wu TS, Linz JE. Recombinational inactivation of the gene encoding nitrate reductase in Aspergillus parasiticus. Appl. Environ. Microbiol. 59: 2998-3002 (1993).

Wyman M, Bird C. Lack of control of nitrite assimilation by ammonium in an oceanic picocyanobacterium, Synechococcus sp. strain WH 8103. Appl. Environ. Microbiol. 73: 3028-3033 (2007).

Xing H, Tan LL, An LH, Zhao ZG, Wang SM, Zhang CL. Evidence for the involvement of nitric oxide and reactive oxygen species in osmotic stress tolerance of wheat seedlings: Inverse correlation between leaf abscisic acid accumulation and leaf water loss. Plant Growth Regul. 42: 61-68 (2004).

Xiong ZT, Liu C, Geng B. Phytotoxic effects of copper on nitrogen metabolism and plant growth in Brassica pekinensis Rupr. Ecotoxicol. Environ. Saf. 64: 273-280 (2006).

Xiong ZT, Zhao F, Li MJ. Lead toxicity in Brassica pekinensis Rupr.: effect on nitrate assimilation and growth. Environ. Toxicol. 21: 147-153 (2006).

Xu YC, Zhao BL. The main origin of endogenous NO in higher non-leguminous plants. Plant Physiol. Biochem. 41: 833-838 (2003).

Xu ZZ, Zhou GS. Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta 224: 1080-1090 (2006).

Xuejiang W, Dzyadevych SV, Chovelon JM, Renault NJ, Ling C, Siqing X, Jianfu Z. Conductometric nitrate biosensor based on methyl viologen/Nafion((R))/nitrate reductase interdigitated electrodes. Talanta. 69: 450-455 (2006).

Yamamoto-Katou A, Katou S, Yoshioka H, Doke N, Kawakita K. Nitrate reductase is responsible for elicitin-induced nitric oxide production in Nicotiana benthamiana. Plant Cell Physiol. 47: 726-735 (2006).

Yamasaki H. The NO world for plants: achieving balance in an open system. Plant Cell Environ. 28: 78-84 (2005).

Yamasaki H, Sakihama Y. Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett. 468: 89-92 (2000).

Yaneva IA, Hoffmann GW, Tischner R. Nitrate reductase from winter wheat leaves is activated at low temperature via protein dephosphorylation. Physiol. Plant. 114: 65-72 (2002).

Yang SH, Berberich T, Miyazaki A, Sano H, Kusano T. Ntdin, a tobacco senescence-associated gene, is involved in molybdenum cofactor biosynthesis. Plant Cell Physiol. 44: 1037-1044 (2003).

Yang Z, Midmore DJ. A model for the circadian oscillations in expression and activity of nitrate reductase in higher plants. Ann. Bot. (Lond.) 96: 1019-1026 (2005).

Yao X, Liu Q. Responses of enzymes in terrestrial plants to enhanced UV-B radiation. Ying Yong Sheng Tai Xue Bao 17: 939-942 (2006).

Yin S, Ze Y, Liu C, Li N, Zhou M, Duan Y, Hong F. Cerium relieves the inhibition of nitrogen metabolism of spinach caused by magnesium deficiency. Biol. Trace Elem. Res. May 6 [Epub ahead of print] (2009).

Yoneyama T, Matsumaru T, Usui K, Engelaar WMHG. Discrimination of nitrogen isotopes during absorption of ammonium and nitrate at different nitrogen concentrations by rice (Oryza sativa L.) plants. Plant Cell Environ. 24: 133-139 (2001).

Yoshida LC, Allen EB. N-15 uptake by mycorrhizal native and invasive plants from a N-eutrophied shrubland: a greenhouse experiment. Biol. Fertil. Soils 39: 243-248 (2004).

Yoshimatsu K, Araya O, Fujiwara T. Haloarcula marismortui cytochrome B-561 is encoded by the narC gene in the dissimilatory nitrate reductase operon. Extremophiles 11: 41-47 (2007).

Yoshimatsu K, Iwasaki T, Fujiwara T. Sequence and electron paramagnetic resonance analyses of nitrate reductase NarGH from a denitrifying halophilic euryarchaeote Haloarcula marismortui. FEBS Lett. 516: 145-150 (2002).

Young EB, Beardall J. Photosynthetic function in Dunaliella tertiolecta (Chlorophyta) during a nitrogen starvation and recovery cycle. J. Phycol. 39: 897-905 (2003).

Young EB, Berges JA, Dring MJ. Physiological responses of intertidal marine brown algae to nitrogen deprivation and resupply of nitrate and ammonium. Physiol. Plant. 135: 400-411 (2009).

Yu FM, Qiu RL, Tang YT, Ying RR, Zhou XY, Zhao X, Hu PJ, Zeng XW. Effects of cadmium on the growth and nitrogen metabolism in Brassica chinensis. Huan Jing Ke Xue 29: 506-511 (2008).

Yu X, Sukumaran S, Marton L. Differential expression of the Arabidopsis Nia1 and Nia2 genes. Cytokinin-induced nitrate reductase activity is correlated with increased Nia1 transcription and mRNA levels. Plant Physiol. 116: 1091-1096 (1998).

Yuan GF, Fu YH, Marzluf GA. nit-4, a pathway-specific regulatory gene of Neurospora crassa, encodes a protein with a putative binuclear zinc DNA-binding domain. Mol. Cell Biol. 11: 5735-5745 (1991).

Yuan GF, Marzluf GA. Transformants of Neurospora crassa with the nit-4 nitrogen regulatory gene: copy number, growth rate and enzyme activity. Curr. Genet. 22: 205-211 (1992).

Yun SH, Hwang TS, Park DH. Metabolic characterization of lactic acid bacterium Lactococcus garvieae sk11, capable of reducing ferric iron, nitrate, and fumarate. J. Microbiol. Biotechnol. 17: 218-225 (2007).

Yusuf M, Hasan SA, Ali B, Hayat S, Fariduddin Q, Ahmad A. Effect of salicylic acid on salinity-induced changes in Brassica juncea. J. Integr. Plant Biol. 50: 1096-1102 (2008).

Zabalza A, Gaston S, Ribas-Carbo M, Orcaray L, Igal M, Royuela M. Nitrogen assimilation studies using (15)N in soybean plants treated with imazethapyr, an inhibitor of branched-chain amino acid biosynthesis. J. Agric. Food Chem. 54: 8818-8823 (2006).

Zafra O, Ramirez S, Castan P, Moreno R, Cava F, Valles C, Caro E, Berenguer J. A cytochrome c encoded by the nar operon is required for the synthesis of active respiratory nitrate reductase in Thermus thermophilus. FEBS Lett. 523: 99-102 (2002).

Zahalak M, Pratte B, Werth KJ, Thiel T. Molybdate transport and its effect on nitrogen utilization in the cyanobacterium Anabaena variabilis ATCC 29413. Mol. Microbiol. 51: 539-549 (2004).

Zaumseil J, Wittstock G, Bahrs S, Steinrucke P. Imaging the activity of nitrate reductase by means of a scanning electrochemical microscope. Fresenius J. Anal. Chem. 367: 352-355 (2000).

Zdunek-Zastocka E, Lips HS. Plant molybdoenzymes and their response to stress. Acta Physiol. Plant. 25: 437-452 (2003).

Zdunek-Zastocka E, Lips HS. Is xanthine dehydrogenase involved in response of pea plants (Pisum sativum L.) to salinity or ammonium treatment? Acta Physiol. Plant. 25: 395-401 (2003).

Zeiler KG, Solomonson LP. Regulation of Chlorella nitrate reductase: control of enzyme activity and immunoreactive protein levels by ammonia. Arch. Biochem. Biophys. 269: 46-54 (1989).

Zennaro E, Ciabatti I, Cutruzzola F, D'Alessandro R, Silvestrini MC. The nitrite reductase gene of Pseudomonas aeruginosa: effect of growth conditions on the expression and construction of a mutant by gene disruption. FEMS Microbiol. Lett. 109: 243-250 (1993).

Zhang D, Lefebvre PA. FAR1, a negative regulatory locus required for the repression of the nitrate reductase gene in Chlamydomonas reinhardtii. Genetics 146: 121-133 (1997).

Zhang H, Jennings A, Barlow PW, Forde BG. Dual pathways for regulation of root branching by nitrate. Proc. Natl. Acad. Sci. U.S.A. 96: 6529-6534 (1999).

Zhang L, Shoun H. Purification and functional analysis of fungal nitric oxide reductase cytochrome P450nor. Methods Enzymol. 437: 117-133 (2008).

Zhang N, MacKown CT. Nitrate fluxes and nitrate reductase activity of suspension-cultured tobacco cells. Effects of internal and external nitrate concentrations. Plant Physiol. 102: 851-857 (1993).

Zhang Y, Pu H, Wang Q, Cheng S, Zhao W, Zhang Y, Zhao J. PII is important in regulation of nitrogen metabolism but not required for heterocyst formation in the cyanobacterium Anabaena sp. PCC 7120. J. Biol. Chem. 282: 33641-33648 (2007).

Zhang Y, Wang Y, Kanyuka K, Parry MA, Powers SJ, Halford NG. GCN2-dependent phosphorylation of eukaryotic translation initiation factor-2alpha in Arabidopsis. J. Exp. Bot. 59: 3131-3141 (2008).

Zhao CM, Hasegawa H, Ichii M. A chlorate resistant mutant of rice (Oryza sativa L.) with normal nitrate uptake and nitrate reductase activity. Breeding Sci. 50: 9-15 (2000).

Zhao Z, Rothery RA, Weiner JH. Transient kinetic studies of heme reduction in Escherichia coli nitrate reductase A (NarGHI) by menaquinol. Biochemistry 42: 5403-5413 (2003).

Zhou J, Kilian A, Warner RL, Kleinhofs A. Variation of nitrate reductase genes in selected grass species. Genome 38: 919-927 (1995).

Zhou J, Kleinhofs A. Molecular evolution of nitrate reductase genes. J. Mol. Evol. 42: 432-442 (1996).

Zimmer W, Mendel R. Molybdenum metabolism in plants. Plant Biol. 1: 160-168 (1999).

Zottini M, Costa A, De Michele R, Ruzzene M, Carimi F, Lo Schiavo F. Salicylic acid activates nitric oxide synthesis in Arabidopsis. J. Exp. Bot. 58: 1397-1405 (2007).

Zucchi TM. RNA-mediated transformation in Aspergillus nidulans recovers gene functions lost by deletion or by point mutations. Cell Mol. Biol. (Noisy-Le-Grand) 42: 889-904 (1996).

Zuk M, Skala J, Biernat J, Szopa J. Repression of six 14-3-3 protein isoforms resulting in the activation of nitrate and carbon fixation key enzymes from transgenic potato plants. Plant Sci. 165: 731-741 (2003).

Zuk M, Weber R, Szopa J. 14-3-3 protein down-regulates key enzyme activities of nitrate and carbohydrate metabolism in potato plants. J. Agric. Food Chem. 53: 3454-3460 (2005).

Zumft WG. Nitric oxide signaling and NO dependent transcriptional control in bacterial denitrification by members of the FNR-CRP regulator family. J. Mol. Microbiol. Biotechnol. 4: 277-286 (2002).

Zumft WG. Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme-copper oxidase type. J. Inorg. Biochem. 99: 194-215 (2005).

Number of references = 1324

| PubMed Search | Entrez Protein Search | ISI Web of Knowledge Search | Scirus Search |

David Rhodes
Department of Horticulture & Landscape Architecture
Horticulture Building
625 Agriculture Mall Drive
Purdue University
West Lafayette, IN 47907-2010
Last Update: 10/01/09