Purdue University Logo
Department of Horticulture and Landscape Architecture
 
Horticulture Home Page
Agriculture Home Page
Purdue Home Page
Blackboard
HORT640 Home Page
N Use By Plants
Nitrate Assimilation
Ammonia Assimilation
Glu, Gln, Asn, Gly, Ser
Aminotransferases
Asp, Ala, GABA
Val, Leu, Ileu, Thr, Lys
Pro, Arg, Orn
Polyamines
Non-protein AAs
Alkaloids
Sulfate Assimilation
Cys, Met, AdoMet, ACC
His, Phe, Tyr, Tryp
Secondary Products
Onium Compounds
Enzymes
Methods
Simulation
References
HORT640 - Metabolic Plant Physiology

References, indole and acetic

Abebie B, Lers A, Philosoph-Hadas S, Goren R, Riov J, Meir S. Differential effects of NAA and 2,4-D in reducing floret abscission in Cestrum (Cestrum elegans) cut flowers are associated with their differential activation of Aux/IAA homologous genes. Ann. Bot. (Lond.) 101: 249-259 (2008).

Abel S, Nguyen MD, Chow W, Theologis A. ACS4, a primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana. Structural characterization, expression in Escherichia coli, and expression characteristics in response to auxin. J. Biol. Chem. 270: 19093-19099 (1995).

Adham AR, Zolman BK, Millius A, Bartel B. Mutations in Arabidopsis acyl-CoA oxidase genes reveal distinct and overlapping roles in beta-oxidation. Plant J. 41: 859-874 (2005).

Albacete A, Ghanem ME, Martinez-Andujar C, Acosta M, Sanchez-Bravo J, Martinez V, Lutts S, Dodd IC, Perez-Alfocea F. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J. Exp. Bot. 59: 4119-4131 (2008).

Aloni R, Aloni E, Langhans M, Ullrich CI. Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann. Bot. (Lond.) 97: 883-893 (2006).

Aloni R, Langhans M, Aloni E, Ullrich CI. Role of cytokinin in the regulation of root gravitropism. Planta 220: 177-182 (2004).

Aubry C, Morere-Le Paven MC, Chateigner-Boutin AL, Teulat-Merah B, Ricoult C, Peltier D, Jalouzot R, Limami AM. A gene encoding a germin-like protein, identified by a cDNA-AFLP approach, is specifically expressed during germination of Phaseolus vulgaris. Planta 217: 466-475 (2003).

Avsian-Kretchmer O, Cheng JC, Chen L, Moctezuma E, Sung ZR. Indole acetic acid distribution coincides with vascular differentiation pattern during Arabidopsis leaf ontogeny. Plant Physiol. 130: 199-209 (2002).

Bak S, Tax FE, Feldmann KA, Galbraith DW, Feyereisen R. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13: 101-111 (2001).

Bar-Nun N, Sachs T, Mayer AM. A role for IAA in the infection of Arabidopsis thaliana by Orobanche aegyptiaca. Ann. Bot. (Lond.) 101: 261-265 (2008).

Bartel B. Auxin biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 51-66 (1997).

Bartel B, Fink GR. Differential regulation of an auxin-producing nitrilase gene family in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 91: 6649-6653 (1994).

Bartel B, Fink GR. ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugates. Science 268: 1745-1748 (1995).

Bartling D, Seedorf M, Mithofer A, Weiler EW. Cloning and expression of an Arabidopsis nitrilase which can convert indole-3-acetonitrile to the plant hormone, indole-3-acetic acid. Eur. J. Biochem. 205: 417-424 (1992).

Bartling D, Seedorf M, Schmidt RC, Weiler EW. Molecular characterization of two cloned nitrilases from Arabidopsis thaliana: key enzymes in biosynthesis of the plant hormone indole-3-acetic acid. Proc. Natl. Acad. Sci. U.S.A. 91: 6021-6025 (1994).

Basu S, Sun H, Brian L, Quatrano RL, Muday GK. Early embryo development in Fucus distichus is auxin sensitive. Plant Physiol. 130: 292-302 (2002).

Becker D, Hedrich R. Channelling auxin action: modulation of ion transport by indole-3-acetic acid. Plant Mol. Biol. 49: 349-356 (2002).

Bekman EP, Saibo NJ, Di Cataldo A, Regalado AP, Ricardo CP, Rodrigues-Pousada C. Differential expression of four genes encoding 1-aminocyclopropane-1-carboxylate synthase in Lupinus albus during germination, and in response to indole-3-acetic acid and wounding. Planta 211: 663-672 (2000).

Benveniste I, Bronner R, Wang Y, Compagnon V, Michler P, Schreiber L, Salaun JP, Durst F, Pinot F. CYP94A1, a plant cytochrome P450-catalyzing fatty acid omega-hydroxylase, is selectively induced by chemical stress in Vicia sativa seedlings. Planta 221: 881-890 (2005).

Berleth T, Scarpella E, Prusinkiewicz P. Towards the systems biology of auxin-transport-mediated patterning. Trends Plant Sci. 12: 151-159 (2007).

Biasi R, Falasca G, Speranza A, De Stradis A, Scoccianti V, Franceschetti M, Bagni N, Altamura MM. Biochemical and ultrastructural features related to male sterility in the dioecious species Actinidia deliciosa. Plant Physiol. Biochem. 39: 395-406 (2001).

Bilang J, Sturm A. Cloning and characterization of a glutathione S-transferase that can be photolabeled with 5-azido-indole-3-acetic acid. Plant Physiol. 109: 253-260 (1995).

Bjorklund S, Antti H, Uddestrand I, Moritz T, Sundberg B. Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant J. 52: 499-511 (2007).

Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Van Onckelen H, Van Montagu M, Inze D. Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7: 1405-1419 (1995).

Botella JR, Schlagnhaufer CD, Arteca JM, Arteca RN, Phillips AT. Identification of two new members of the 1-aminocyclopropane-1-carboxylate synthase-encoding multigene family in mung bean. Gene 123: 249-253 (1993).

Brandl MT, Lindow SE. Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola. Appl. Environ. Microbiol. 62: 4121-4128 (1996).

Brocard-Gifford I, Lynch TJ, Garcia ME, Malhotra B, Finkelstein RR. The Arabidopsis thaliana abscisic acid-insensitive8 locus encodes a novel protein mediating abscisic acid and sugar responses essential for growth. Plant Cell 16: 406-421 (2004).

Buer CS, Muday GK. The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell 16: 1191-1205 (2004).

Buer CS, Sukumar P, Muday GK. Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol. 140: 1384-1396 (2006).

Caba JM, Centeno ML, Fernandez B, Gresshoff PM, Ligero F. Inoculation and nitrate alter phytohormone levels in soybean roots: differences between a supernodulating mutant and the wild type. Planta 211: 98-104 (2000).

Camas A, Cardenas L, Quinto C, Lara M. Expression of different calmodulin genes in bean (Phaseolus vulgaris L.): Role of nod factor on calmodulin gene regulation. Mol. Plant Microbe Interact. 15: 428-436 (2002).

Campanella JJ, Ludwig-Mueller J, Town CD. Isolation and characterization of mutants of Arabidopsis thaliana with increased resistance to growth inhibition by indoleacetic acid-amino acid conjugates. Plant Physiol. 112: 735-745 (1996).

Campanella JJ, Olajide AF, Magnus V, Ludwig-Muller J. A novel auxin conjugate hydrolase from wheat with substrate specificity for longer side-chain auxin amide conjugates. Plant Physiol. 135: 2230-2240 (2004).

Carrier DJ, Abu Bakar NT, Swarup R, Callaghan R, Napier RM, Bennett MJ, Kerr ID. The binding of auxin to the Arabidopsis auxin influx transporter, AUX1. Plant Physiol. 148: 529-535 (2008).

Celenza JL. Metabolism of tyrosine and tryptophan - new genes for old pathways. Curr. Opin. Plant Biol. 4: 234-240 (2001).

Celenza JL, Quiel JA, Smolen GA, Merrikh H, Silvestro AR, Normanly J, Bender J. The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiol. 137: 253-262 (2005).

Chaabouni S, Jones B, Delalande C, Wang H, Li Z, Mila I, Frasse P, Latche A, Pech JC, Bouzayen M. Sl-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth. J. Exp. Bot. 60: 1349-1362 (2009).

Chaban C, Waller F, Furuya M, Nick P. Auxin responsiveness of a novel cytochrome p450 in rice coleoptiles. Plant Physiol. 133: 2000-2009 (2003).

Chen H, Xiong L. The short-rooted vitamin B6-deficient mutant pdx1 has impaired local auxin biosynthesis. Planta 229: 1303-1310 (2009).

Chen L, Ortiz-Lopez A, Jung A, Bush DR. ANT1, an aromatic and neutral amino acid transporter in Arabidopsis. Plant Physiol. 125: 1813-1820 (2001).

Chhun T, Uno Y, Taketa S, Azuma T, Ichii M, Okamoto T, Tsurumi S. Saturated humidity accelerates lateral root development in rice (Oryza sativa L.) seedlings by increasing phloem-based auxin transport. J. Exp. Bot. 58: 1695-1704 (2007).

Chiappetta A, Fambrini M, Petrarulo M, Rapparini F, Michelotti V, Bruno L, Greco M, Baraldi R, Salvini M, Pugliesi C, Bitonti MB. Ectopic expression of LEAFY COTYLEDON1-LIKE gene and localized auxin accumulation mark embryogenic competence in epiphyllous plants of Helianthus annuus x H. tuberosus. Ann. Bot. (Lond.) 103: 735-847 (2009).

Chisnell JR, Bandurski RS. Translocation of radiolabeled indole-3-acetic acid and indole-3-acetyl-myo-inositol from kernel to shoot of Zea mays L. Plant Physiol. 86: 79-84 (1988).

Chiwocha SD, Abrams SR, Ambrose SJ, Cutler AJ, Loewen M, Ross AR, Kermode AR. A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J. 35: 405-417 (2003).

Chou JC, Kuleck GA, Cohen JD, Mulbry WW. Partial purification and characterization of an inducible indole-3-acetyl-L-aspartic acid hydrolase from Enterobacter agglomerans. Plant Physiol. 112: 1281-1287 (1996).

Chuang HW, Zhang W, Gray WM. Arabidopsis ETA2, an apparent ortholog of the human cullin-interacting protein CAND1, is required for auxin responses mediated by the SCF(TIR1) ubiquitin ligase. Plant Cell 16: 1883-1897 (2004).

Clement B, Pollmann S, Weiler E, Urbanczyk-Wochniak E, Otten L. The Agrobacterium vitis T-6b oncoprotein induces auxin-independent cell expansion in tobacco. Plant J. 45: 1017-1027 (2006).

Cluis CP, Mouchel CF, Hardtke CS. The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways. Plant J. 38: 332-347 (2004).

Cohn W, Crawford IP. Regulation of enzyme synthesis in the tryptophan pathway of Acinetobacter calcoaceticus. J. Bacteriol. 127: 367-379 (1976).

Colon-Carmona A, Chen DL, Yeh KC, Abel S. Aux/IAA proteins are phosphorylated by phytochrome in vitro. Plant Physiol. 124: 1728-1738 (2000).

Contreras-Cornejo HA, Macías-Rodriguez L, Cortes-Penagos C, Lopez-Bucio J. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 149: 1579-1592 (2009).

Cooke TJ, Poli D, Sztein AE, Cohen JD. Evolutionary patterns in auxin action. Plant Mol. Biol. 49: 319-338 (2002).

Cosio C, Vuillemin L, De Meyer M, Kevers C, Penel C, Dunand C. An anionic class III peroxidase from zucchini may regulate hypocotyl elongation through its auxin oxidase activity. Planta 229: 823-836 (2009).

Costantini E, Landi L, Silvestroni O, Pandolfini T, Spena A, Mezzetti B. Auxin synthesis-encoding transgene enhances grape fecundity. Plant Physiol. 143: 1689-1694 (2007).

Cox MC, Benschop JJ, Vreeburg RA, Wagemaker CA, Moritz T, Peeters AJ, Voesenek LA. The roles of ethylene, auxin, abscisic acid, and gibberellin in the hyponastic growth of submerged Rumex palustris petioles. Plant Physiol. 136: 2948-2960 (2004).

da Mota RV, Cordenunsi BR, Do Nascimento JR, Purgatto E, Rosseto MR, Lajolo FM. Activity and expression of banana starch phosphorylases during fruit development and ripening. Planta 216: 325-333 (2002).

Dai Y, Wang H, Li B, Huang J, Liu X, Zhou Y, Mou Z, Li J. Increased expression of MAP KINASE KINASE7 causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis. Plant Cell 18: 308-320 (2006).

Davies RT, Goetz DH, Lasswell J, Anderson MN, Bartel B. IAR3 encodes an auxin conjugate hydrolase from Arabidopsis. Plant Cell 11: 365-376 (1999).

de Marco A, Guzzardi P, Jamet E. Isolation of tobacco isoperoxidases accumulated in cell-suspension culture medium and characterization of activities related to cell wall metabolism. Plant Physiol. 120: 371-382 (1999).

Deguchi M, Koshita Y, Gao M, Tao R, Tetsumura T, Yamaki S, Kanayama Y. Engineered sorbitol accumulation induces dwarfism in Japanese persimmon. J. Plant Physiol. 161: 1177-1184 (2004).

Deikman J, Ulrich M. A novel cytokinin-resistant mutant of Arabidopsis with abbreviated shoot development. Planta 195: 440-449 (1995).

del Campillo E, Bennett AB. Pedicel breakstrength and cellulase gene expression during tomato flower abscission. Plant Physiol. 111: 813-820 (1996).

Delk NA, Johnson KA, Chowdhury NI, Braam J. CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress. Plant Physiol. 139: 240-253 (2005).

Delumeau O, Morere-Le Paven M-C, Montrichard F, Laval-Martin DL. Effects of short-term NaCl stress on calmodulin transcript levels and calmodulin-dependent NAD kinase activity in two species of tomato. Plant Cell Environ. 23: 329-336 (2000).

DeMason DA, Chawla R. Roles for auxin during morphogenesis of the compound leaves of pea (Pisum sativum). Planta 218: 435-448 (2004).

Ditengou FA, Beguiristain T, Lapeyrie F. Root hair elongation is inhibited by hypaphorine, the indole alkaloid from the ectomycorrhizal fungus Pisolithus tinctorius, and restored by indole-3-acetic acid. Planta 211: 722-728 (2000).

Ditengou FA, Lapeyrie F. Hypaphorine from the ectomycorrhizal fungus Pisolithus tinctorius counteracts activities of indole-3-acetic acid and ethylene but not synthetic auxins in eucalypt seedlings. Mol. Plant Microbe Interact. 13: 151-158 (2000).

Ditengou FA, Raudaskoski M, Lapeyrie F. Hypaphorine, an indole-3-acetic acid antagonist delivered by the ectomycorrhizal fungus Pisolithus tinctorius, induces reorganisation of actin and the microtubule cytoskeleton in Eucalyptus globulus ssp bicostata root hairs. Planta 218: 217-225 (2003).

Dohmoto M, Sano J, Tsunoda H, Yamaguchi K. Structural analysis of the TNIT4 genes encoding nitrilase-like protein from tobacco. DNA Res. 6: 313-317 (1999).

Dohmoto M, Tsunoda H, Isaji G, Chiba R, Yamaguchi K. Genes encoding nitrilase-like proteins from tobacco. DNA Res. 7: 283-289 (2000).

Dong L, Wang L, Zhang Y, Zhang Y, Deng X, Xue Y. An auxin-inducible F-box protein CEGENDUO negatively regulates auxin-mediated lateral root formation in Arabidopsis. Plant Mol. Biol. 60: 599-615 (2006).

Douglas Grubb C, Zipp BJ, Ludwig-Muller J, Masuno MN, Molinski TF, Abel S. Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J. 40: 893-908 (2004).

Dreher KA, Brown J, Saw RE, Callis J. The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness. Plant Cell 18: 699-714 (2006).

Duan H, Schuler MA. Differential expression and evolution of the Arabidopsis CYP86A subfamily. Plant Physiol. 137: 1067-1081 (2005).

Eckardt NA. MicroRNAs regulate auxin homeostasis and plant development. Plant Cell 17: 1335-1338 (2005).

Ehlert B, Schottler MA, Tischendorf G, Ludwig-Muller J, Bock R. The paramutated SULFUREA locus of tomato is involved in auxin biosynthesis. J. Exp. Bot. 59: 3635-3647 (2008).

Eklof S, Astot C, Sitbon F, Moritz T, Olsson O, Sandberg G. Transgenic tobacco plants co-expressing Agrobacterium iaa and ipt genes have wild-type hormone levels but display both auxin- and cytokinin-overproducing phenotypes. Plant J. 23: 279-284 (2000).

Estelle M. Proteases and cellular regulation in plants. Curr. Opin. Plant Biol. 4: 254-260 (2001).

Ewing NN, Bennett AB. Assessment of the number and expression of P-type H(+)-ATPase genes in tomato. Plant Physiol. 106: 547-557 (1994).

Fambrini M, Bonsignori E, Rapparini F, Cionini G, Michelotti V, Bertini D, Baraldi R, Pugliesi C. stem fasciated, a recessive mutation in sunflower (Helianthus annuus), alters plant morphology and auxin level. Ann. Bot. (Lond.) 98: 715-730 (2006).

Farre EM, Bachmann A, Willmitzer L, Trethewey RN. Acceleration of potato tuber sprouting by the expression of a bacterial pyrophosphatase. Nat. Biotechnol. 19: 268-272 (2001).

Fedorova E, Redondo FJ, Koshiba T, Pueyo JJ, de Felipe MR, Lucas MM. Aldehyde oxidase (AO) in the root nodules of Lupinus albus and Medicago truncatula: identification of AO in meristematic and infection zones. Mol. Plant Microbe Interact. 18: 405-413 (2005).

Fei H, Zhang R, Pharis RP, Sawhney VK. Pleiotropic effects of the male sterile33 (ms33) mutation in Arabidopsis are associated with modifications in endogenous gibberellins, indole-3-acetic acid and abscisic acid. Planta 219: 649-660 (2004).

Feng XL, Ni WM, Elge S, Mueller-Roeber B, Xu ZH, Xue HW. Auxin flow in anther filaments is critical for pollen grain development through regulating pollen mitosis. Plant Mol. Biol. 61: 215-226 (2006).

Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge CA. The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 17: 464-474 (2005).

Footitt S, Dietrich D, Fait A, Fernie AR, Holdsworth MJ, Baker A, Theodoulou FL. The COMATOSE ABC transporter is required for full fertility in Arabidopsis. Plant Physiol. 144: 1467-1480 (2007).

Forest L, Demongeota J. Cellular modelling of secondary radial growth in conifer trees: application to Pinus radiata (D. Don). Bull. Math. Biol. 68: 753-784 (2006).

Fukaki H, Nakao Y, Okushima Y, Theologis A, Tasaka M. Tissue-specific expression of stabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis. Plant J. 44: 382-395 (2005).

Fukaki H, Taniguchi N, Tasaka M. PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation. Plant J. 48: 380-389 (2006).

Ge L, Chen H, Jiang JF, Zhao Y, Xu ML, Xu YY, Tan KH, Xu ZH, Chong K. Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity. Plant Physiol. 135: 1502-1513 (2004).

Gehring CA, McConchie RM, Venis MA, Parish RW. Auxin-binding-protein antibodies and peptides influence stomatal opening and alter cytoplasmic pH. Planta 205: 581-586 (1998).

Geisler M, Blakeslee JJ, Bouchard R, Lee OR, Vincenzetti V, Bandyopadhyay A, Titapiwatanakun B, Peer WA, Bailly A, Richards EL, Ejendal KF, Smith AP, Baroux C, Grossniklaus U, Muller A, Hrycyna CA, Dudler R, Murphy AS, Martinoia E. Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J. 44: 179-194 (2005).

Ghanem ME, Albacete A, Martinez-Andujar C, Acosta M, Romero-Aranda R, Dodd IC, Lutts S, Perez-Alfocea F. Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). J. Exp. Bot. 59: 3039-3050 (2008).

Ghasempour HR, Anderson EM, Gaff DF. Effects of growth substances on the protoplasmic drought tolerance of leaf cells of the resurrection grass, Sporobolus stapfianus. Aust. J. Plant Physiol. 28: 1115-1120 (2001).

Gigolashvili T, Berger B, Mock HP, Müller C, Weisshaar B, Flugge UI. The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J. 50: 886-901 (2007).

Glawischnig E, Tomas A, Eisenreich W, Spiteller P, Bacher A, Gierl A. Auxin biosynthesis in maize kernels. Plant Physiol. 123: 1109-1120 (2000).

Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S. Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol. 134: 1555-1573 (2004).

Goddijn OJ, de Kam RJ, Zanetti A, Schilperoort RA, Hoge JH. Auxin rapidly down-regulates transcription of the tryptophan decarboxylase gene from Catharanthus roseus. Plant Mol. Biol. 18: 1113-1120 (1992).

Gonzali S, Novi G, Loreti E, Paolicchi F, Poggi A, Alpi A, Perata P. A turanose-insensitive mutant suggests a role for WOX5 in auxin homeostasis in Arabidopsis thaliana. Plant J. 44: 633-645 (2005).

Gray WM, Muskett PR, Chuang HW, Parker JE. Arabidopsis SGT1b is required for SCF(TIR1)-mediated auxin response. Plant Cell 15: 1310-1319 (2003).

Grsic-Rausch S, Kobelt P, Siemens JM, Bischoff M, Ludwig-Muller J. Expression and localization of nitrilase during symptom development of the clubroot disease in Arabidopsis. Plant Physiol. 122: 369-378 (2000).

Haga K, Iino M. Auxin-growth relationships in maize coleoptiles and pea internodes and control by auxin of the tissue sensitivity to auxin. Plant Physiol. 117: 1473-1486 (1998).

Haga K, Iino M. Asymmetric distribution of auxin correlates with gravitropism and phototropism but not with autostraightening (autotropism) in pea epicotyls. J. Exp. Bot. 57: 837-847 (2006).

Haga K, Takano M, Neumann R, Iino M. The rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Plant Cell 17: 103-115 (2005).

Hansen H, Grossmann K. Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol. 124: 1437-1448 (2000).

Hellgren JM, Olofsson K, Sundberg B. Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. Plant Physiol. 135: 212-220 (2004).

Hillebrand H, Bartling D, Weiler EW. Structural analysis of the nit2/nit1/nit3 gene cluster encoding nitrilases, enzymes catalyzing the terminal activation step in indole-acetic acid biosynthesis in Arabidopsis thaliana. Plant Mol. Biol. 36: 89-99 (1998).

Hillebrand H, Tiemann B, Hell R, Bartling D, Weiler EW. Structure of the gene encoding nitrilase 1 from Arabidopsis thaliana. Gene 170: 197-200 (1996).

Hirano K, Aya K, Hobo T, Sakakibara H, Kojima M, Shim RA, Hasegawa Y, Ueguchi-Tanaka M, Matsuoka M. Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. Plant Cell Physiol. 49: 1429-1450 (2008).

Honda I, Turuspekov Y, Komatsuda T, Watanabe Y. Morphological and physiological analysis of cleistogamy in barley (Hordeum vulgare). Physiol. Plant. 124: 524-531 (2005).

Hong SB, Sexton R, Tucker ML. Analysis of gene promoters for two tomato polygalacturonases expressed in abscission zones and the stigma. Plant Physiol. 123: 869-882 (2000).

Hooykaas PJ. Chapter 3. Agrobacterium, a Natural Metabolic Engineer of Plants. In "Metabolic Engineering of Plant Secondary Metabolism" (Verpoorte R, Alfermann AW, eds), Kluwer Academic Publishers, Dortrecht, The Netherlands, pp. 51-67 (2000).

Hou G, Hill JP, Blancaflor EB. Developmental anatomy and auxin response of lateral root formation in Ceratopteris richardii. J. Exp. Bot. 55: 685-693 (2004).

Hou ZX, Huang WD. Immunohistochemical localization of IAA and ABP1 in strawberry shoot apexes during floral induction. Planta 222: 678-687 (2005).

Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M. Crown rootless1, which is essential for crown root formation in rice, is a target of an auxin response factor in auxin signaling. Plant Cell 17: 1387-1396 (2005).

Jackson RG, Kowalczyk M, Li Y, Higgins G, Ross J, Sandberg G, Bowles DJ. Over-expression of an Arabidopsis gene encoding a glucosyltransferase of indole-3-acetic acid: phenotypic characterisation of transgenic lines. Plant J. 32: 573-583 (2002).

Jackson RG, Lim EK, Li Y, Kowalczyk M, Sandberg G, Hoggett J, Ashford DA, Bowles DJ. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase. J. Biol. Chem. 276: 4350-4356 (2001).

Jacobs J, Roe JL. SKS6, a multicopper oxidase-like gene, participates in cotyledon vascular patterning during Arabidopsis thaliana development. Planta 222: 652-666 (2005).

Jagadeeswaran G, Raina S, Acharya BR, Maqbool SB, Mosher SL, Appel HM, Schultz JC, Klessig DF, Raina R. Arabidopsis GH3-LIKE DEFENSE GENE 1 is required for accumulation of salicylic acid, activation of defense responses and resistance to Pseudomonas syringae. Plant J. 51: 234-246 (2007).

Jager CE, Symons GM, Glancy NE, Reid JB, Ross JJ. Evidence that the mature leaves contribute auxin to the immature tissues of pea (Pisum sativum L.). Planta 226: 361-368 (2007).

Jambois A, Ditengou FA, Kawano T, Delbarre A, Lapeyrie F. The indole alkaloids brucine, yohimbine, and hypaphorine are indole-3-acetic acid-specific competitors which do not alter auxin transport. Physiol. Plant. 120: 501-508 (2004).

Jansen MA, van Den Noort RE, Tan MY, Prinsen E, Lagrimini LM, Thorneley RN. Phenol-oxidizing peroxidases contribute to the protection of plants from ultraviolet radiation stress. Plant Physiol. 126: 1012-1023 (2001).

Jensen PJ, Bandurski RS. Metabolism and synthesis of indole-3-acetic acid (IAA) in Zea mays. Levels of IAA during kernel development and the use of in vitro endosperm systems for studying IAA biosynthesis. Plant Physiol. 106: 343-351 (1994).

Johnson X, Brcich T, Dun E, Goussot M, Haurogne K, Beveridge CA, Rameau C. Branching genes are conserved across species. Genes controlling a novel signal in pea are co-regulated by other long-distance signals. Plant Physiol. 142: 1014-1026 (2006).

Johri S, Jamwal U, Rasool S, Kumar A, Verma V, Qazi GN. Purification and characterization of peroxidases from Withania somnifera (AGB 002) and their ability to oxidize IAA. Plant Sci. 169: 1014-1021 (2005).

Jones PL, Willey DL, Gacesa P, Harwood JL. Isolation, characterisation and expression of a cDNA for pea cholinephosphate cytidylyltransferase. Plant Mol. Biol. 37: 179-185 (1998).

Jones SE, Demeo JS, Davies NW, Noonan SE, Ross JJ. Stems of the Arabidopsis pin1-1 mutant are not deficient in free indole-3-acetic acid. Planta 222: 530-534 (2005).

Jouve L, Gaspar T, Kevers C, Greppin H, Degli Agosti R. Involvement of indole-3-acetic acid in the circadian growth of the first internode of Arabidopsis. Planta 209: 136-142 (1999).

Junghans U, Polle A, Duchting P, Weiler E, Kuhlman B, Gruber F, Teichmann T. Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology. Plant Cell Environ. 29: 1519-1531 (2006).

Kai K, Horita J, Wakasa K, Miyagawa H. Three oxidative metabolites of indole-3-acetic acid from Arabidopsis thaliana. Phytochemistry 68: 1651-1663 (2007).

Kai K, Wakasa K, Miyagawa H. Metabolism of indole-3-acetic acid in rice: identification and characterization of N-beta-d-glucopyranosyl indole-3-acetic acid and its conjugates. Phytochemistry 68: 2512-2522 (2007).

Kaldenhoff R, Iino M. Restoration of phototropic responsiveness in decapitated maize coleoptiles. Plant Physiol. 114: 1267-1272 (1997).

Kamada M, Yamasaki S, Fujii N, Higashitani A, Takahashi H. Gravity-induced modification of auxin transport and distribution for peg formation in cucumber seedlings: possible roles for CS-AUX1 and CS-PIN1. Planta 218: 15-26 (2003).

Kawaguchi M, Syono K. The excessive production of indole-3-acetic acid and its significance in studies of the biosynthesis of this regulator of plant growth and development. Plant Cell Physiol. 37: 1043-1048 (1996).

Kawano N, Kawano T, Lapeyrie F. Inhibition of the indole-3-acetic acid-induced epinastic curvature in tobacco leaf strips by 2,4-dichlorophenoxyacetic acid. Ann. Bot. (Lond.) 91: 465-471 (2003).

Kawano T. Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep. 21: 829-837 (2003).

Keller CP, Stahlberg R, Barkawi LS, Cohen JD. Long-term inhibition by auxin of leaf blade expansion in bean and Arabidopsis. Plant Physiol. 134: 1217-1226 (2004).

Khan MM, Jan A, Karibe H, Komatsu S. Identification of phosphoproteins regulated by gibberellin in rice leaf sheath. Plant Mol. Biol. 58: 27-40 (2005).

Kim SK, Chang SC, Lee EJ, Chung WS, Kim YS, Hwang S, Lee JS. Involvement of brassinosteroids in the gravitropic response of primary root of maize. Plant Physiol. 123: 997-1004 (2000).

Kim YS, Kim D, Jung J. Isolation of a novel auxin receptor from soluble fractions of rice (Oryza sativa L.) shoots. FEBS Lett. 438: 241-244 (1998).

King JJ, Stimart DP, Fisher RH, Bleecker AB. A mutation altering auxin homeostasis and plant morphology in Arabidopsis. Plant Cell 7: 2023-2037 (1995).

Kobayashi M, Izui H, Nagasawa T, Yamada H. Nitrilase in biosynthesis of the plant hormone indole-3-acetic acid from indole-3-acetonitrile: cloning of the Alcaligenes gene and site-directed mutagenesis of cysteine residues. Proc. Natl. Acad. Sci. U.S.A. 90: 247-251 (1993).

Koga J. Structure and function of indolepyruvate decarboxylase, a key enzyme in indole-3-acetic acid biosynthesis. Biochim. Biophys. Acta 1249: 1-13 (1995).

Koga J, Syono K, Ichikawa T, Adachi T. Involvement of L-tryptophan aminotransferase in indole-3-acetic acid biosynthesis in Enterobacter cloacae. Biochim. Biophys. Acta 1209: 241-247 (1994).

Koiwai H, Akaba S, Seo M, Komano T, Koshiba T. Functional expression of two Arabidopsis aldehyde oxidases in the yeast Pichia pastoris. J. Biochem. 127: 659-664 (2000).

Koka CV, Cerny RE, Gardner RG, Noguchi T, Fujioka S, Takatsuto S, Yoshida S, Clouse SD. A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response. Plant Physiol. 122: 85-98 (2000).

Kollmeier M, Felle HH, Horst WJ. Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum? Plant Physiol. 122: 945-956 (2000).

Koshiba T, Matsuyama H. An in vitro system of indole-3-acetic acid formation from tryptophan in maize (Zea mays) coleoptile extracts. Plant Physiol. 102: 1319-1324 (1993).

Kowalczyk M, Sandberg G. Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiol. 127: 1845-1853 (2001).

Kraft M, Kuglitsch R, Kwiatkowski J, Frank M, Grossmann K. Indole-3-acetic acid and auxin herbicides up-regulate 9-cis-epoxycarotenoid dioxygenase gene expression and abscisic acid accumulation in cleavers (Galium aparine): interaction with ethylene. J. Exp. Bot. 58: 1497-1503 (2007).

Kriechbaumer V, Park WJ, Piotrowski M, Meeley RB, Gierl A, Glawischnig E. Maize nitrilases have a dual role in auxin homeostasis and beta-cyanoalanine hydrolysis. J. Exp. Bot. 58: 4225-4233 (2007).

Kulka RG. Hormonal control of root development on epiphyllous plantlets of Bryophyllum (Kalanchoe) marnierianum: role of auxin and ethylene. J. Exp. Bot. 59: 2361-2370 (2008).

Kurepa J, Herouart D, Van Montagu M, Inze D. Differential expression of CuZn- and Fe-superoxide dismutase genes of tobacco during development, oxidative stress, and hormonal treatments. Plant Cell Physiol. 38: 463-470 (1997).

Kurepin LV, Emery RJ, Pharis RP, Reid DM. Uncoupling light quality from light irradiance effects in Helianthus annuus shoots: putative roles for plant hormones in leaf and internode growth. J. Exp. Bot. 58: 2145-2157 (2007).

Kurepin LV, Emery RJ, Pharis RP, Reid DM. The interaction of light quality and irradiance with gibberellins, cytokinins and auxin in regulating growth of Helianthus annuus hypocotyls. Plant Cell Environ. 30: 147-155 (2007).

Kutz A, Muller A, Hennig P, Kaiser WM, Piotrowski M, Weiler EW. A role for nitrilase 3 in the regulation of root morphology in sulphur-starving Arabidopsis thaliana. Plant J. 30: 95-106 (2002).

Laskowski MJ, Dreher KA, Gehring MA, Abel S, Gensler AL, Sussex IM. FQR1, a novel primary auxin-response gene, encodes a flavin mononucleotide-binding quinone reductase. Plant Physiol. 128: 578-590 (2002).

Lasswell J, Rogg LE, Nelson DC, Rongey C, Bartel B. Cloning and characterization of IAR1, a gene required for auxin conjugate sensitivity in Arabidopsis. Plant Cell 12: 2395-2408 (2000).

LeClere S, Rampey RA, Bartel B. IAR4, a gene required for auxin conjugate sensitivity in Arabidopsis, encodes a pyruvate dehydrogenase E1alpha homolog. Plant Physiol. 135: 989-999 (2004).

LeClere S, Schmelz EA, Chourey PS. Cell wall invertase-deficient miniature1 kernels have altered phytohormone levels. Phytochemistry 69: 692-699 (2008).

Lee H, Humann JL, Pitrak JS, Cuperus JT, Parks TD, Whistler CA, Mok MC, Ream LW. Translation start sequences affect the efficiency of silencing of Agrobacterium tumefaciens T-DNA oncogenes. Plant Physiol. 133: 966-977 (2003).

Lee JS, Evans ML. Polar transport of auxin across gravistimulated roots of maize and its enhancement by calcium. Plant Physiol. 77: 824-827 (1985).

Lee SC, Hwang BK. Identification of the pepper SAR8.2 gene as a molecular marker for pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum. Planta 216: 387-396 (2003).

Legue V, Driss-Ecole D, Maldiney R, Tepfer M, Perbal G. The response to auxin of rapeseed (Brassica napus L.) roots displaying reduced gravitropism due to transformation by Agrobacterium rhizogenes. Planta 200: 119-124 (1996).

Leznicki AJ, Bandurski RS. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. I. Partial purification and characterization of the enzyme from Zea mays. Plant Physiol. 88: 1474-1480 (1988).

Leznicki AJ, Bandurski RS. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. II. Metabolic characteristics of the enzyme. Plant Physiol. 88: 1481-1485 (1988).

Li CR, Gan LJ, Xia K, Zhou X, Hew CS. Responses of carboxylating enzymes, sucrose metabolizing enzymes and plant hormones in a tropical epiphytic CAM orchid to CO2 enrichment. Plant Cell Environ. 25: 369-377 (2002).

Li L, Hou X, Tsuge T, Ding M, Aoyama T, Oka A, Gu H, Zhao Y, Qu LJ. The possible action mechanisms of indole-3-acetic acid methyl ester in Arabidopsis. Plant Cell Rep. 27: 575-584 (2008).

Li L, Xu J, Xu ZH, Xue HW. Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. Plant Cell 17: 2738-2753 (2005).

Li TC, Feng TY, Chen WS, Liu ZH. The acute effect of copper on the levels of indole-3-acetic acid and lignin in peanut roots. Aust. J. Plant Physiol. 28: 329-334 (2001).

Li WF, Ding Q, Chen JJ, Cui KM, He XQ. Induction of PtoCDKB and PtoCYCB transcription by temperature during cambium reactivation in Populus tomentosa Carr. J. Exp. Bot. 60: 2621-2630 (2009).

Liang YS, Choi YH, Kim HK, Linthorst HJ, Verpoorte R. Metabolomic analysis of methyl jasmonate treated Brassica rapa leaves by 2-dimensional NMR spectroscopy. Phytochemistry 67: 2503-2511 (2006).

Liu CZ, Gao M, Guo B. Plant regeneration of Erigeron breviscapus (vant.) Hand. Mazz. and its chromatographic fingerprint analysis for quality control. Plant Cell Rep. 27: 39-45 (2008).

Ljun K, Hul AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, Sandberg G. Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol. Biol. 50: 309-332 (2002).

Ljung K, Bhalerao RP, Sandberg G. Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J. 28: 465-474 (2001).

Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Sandberg G. Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 17: 1090-1104 (2005).

Ljung K, Hull AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, Sandberg G. Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol. Biol. 49: 249-272 (2002).

Ljung K, Ostin A, Lioussanne L, Sandberg G. Developmental regulation of indole-3-acetic acid turnover in Scots pine seedlings. Plant Physiol. 125: 464-475 (2001).

Llic N, Normanly J, Cohen JD. Quantification of free plus conjugated indoleacetic acid in Arabidopsis requires correction for the nonenzymatic conversion of indolic nitriles. Plant Physiol. 111: 781-788 (1996).

Long JC, Zhao W, Rashotte AM, Muday GK, Huber SC. Gravity-stimulated changes in auxin and invertase gene expression in maize pulvinal cells. Plant Physiol. 128: 591-602 (2002).

Ludwig-Muller J, Pieper K, Ruppel M, Cohen JD, Epstein E, Kiddle G, Bennett R. Indole glucosinolate and auxin biosynthesis in Arabidopsis thaliana (L.) Heynh. glucosinolate mutants and the development of clubroot disease. Planta 208: 409-419 (1999).

Ludwig-Muller J, Vertocnik A, Town CD. Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. J. Exp. Bot. 56: 2095-2105 (2005).

Lur HS, Setter TL. Role of auxin in maize endosperm development. Timing of nuclear DNA endoreduplication, zein expression, and cytokinin. Plant Physiol. 103: 273-280 (1993).

Madhaiyan M, Poonguzhali S, Ryu J, Sa T. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224: 268-278 (2006).

Madhaiyan M, Poonguzhali S, Sa T. Characterization of 1-aminocyclopropane-1-carboxylate (ACC) deaminase containing Methylobacterium oryzae and interactions with auxins and ACC regulation of ethylene in canola (Brassica campestris). Planta 226: 867-876 (2007).

Magidin M, Pittman JK, Hirschi KD, Bartel B. ILR2, a novel gene regulating IAA conjugate sensitivity and metal transport in Arabidopsis thaliana. Plant J. 35: 523-534 (2003).

Magnus V, Bandurski RS, Schulze A. Synthesis of 4,5,6,7 and 2,4,5,6,7 deuterium-labeled indole-3-acetic acid for use in mass spectrometric assays. Plant Physiol. 66: 775-781 (1980).

Maisch J, Nick P. Actin is involved in auxin-dependent patterning. Plant Physiol. 143: 1695-1704 (2007).

Maraschin Fdos S, Memelink J, Offringa R. Auxin-induced, SCF(TIR1)-mediated poly-ubiquitination marks AUX/IAA proteins for degradation. Plant J. 59: 100-109 (2009).

Marchant A, Bhalerao R, Casimiro I, Eklof J, Casero PJ, Bennett M, Sandberg G. AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14: 589-597 (2002).

Matsuda F, Miyazawa H, Wakasa K, Miyagawa H. Quantification of indole-3-acetic acid and amino acid conjugates in rice by liquid chromatography-electrospray ionization-tandem mass spectrometry. Biosci. Biotechnol. Biochem. 69: 778-783 (2005).

Matsuda F, Yamada T, Miyazawa H, Miyagawa H, Wakasa K. Characterization of tryptophan-overproducing potato transgenic for a mutant rice anthranilate synthase alpha-subunit gene (OASA1D). Planta 222: 535-545 (2005).

Meir S, Hunter DA, Chen JC, Halaly V, Reid MS. Molecular changes occurring during acquisition of abscission competence following auxin depletion in Mirabilis jalapa L. Plant Physiol. 141: 1604-1616 (2006).

Michalczuk L, Ribnicky DM, Cooke TJ, Cohen JD. Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell cultures. Plant Physiol. 100: 1346-1353 (1992).

Mikkelsen MD, Fuller VL, Hansen BG, Nafisi M, Olsen CE, Nielsen HB, Halkier BA. Controlled indole-3-acetaldoxime production through ethanol-induced expression of CYP79B2. Planta 229: 1209-1217 (2009).

Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA. Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J. Biol. Chem. 275: 33712-33717 (2000).

Mikkelsen MD, Naur P, Halkier BA. Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J. 37: 770-777 (2004).

Mikkelsen MD, Petersen BL, Glawischnig E, Jensen AB, Andreasson E, Halkier BA. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiol. 131: 298-308 (2003).

Moctezuma E, Feldman LJ. Auxin redistributes upwards in graviresponding gynophores of the peanut plant. Planta 209: 180-186 (1999).

Molina-Favero C, Creus CM, Simontacchi M, Puntarulo S, Lamattina L. Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol. Plant Microbe Interact. 21: 1001-1009 (2008).

Monroe-Augustus M, Zolman BK, Bartel B. IBR5, a dual-specificity phosphatase-like protein modulating auxin and abscisic acid responsiveness in Arabidopsis. Plant Cell 15: 2979-2991 (2003).

Montague MJ. Hormonal and gravitropic specificity in the regulation of growth and cell wall synthesis in pulvini and internodes from shoots of Avena sativa L. (oat). Plant Physiol. 107: 553-564 (1995).

Morino K, Matsuda F, Miyazawa H, Sukegawa A, Miyagawa H, Wakasa K. Metabolic profiling of tryptophan-overproducing rice calli that express a feedback-insensitive alpha subunit of anthranilate synthase. Plant Cell Physiol. 46: 514-521 (2005).

Morris SE, Cox MC, Ross JJ, Krisantini S, Beveridge CA. Auxin dynamics after decapitation are not correlated with the initial growth of axillary buds. Plant Physiol. 138: 1665-1672 (2005).

Morris SE, Turnbull CG, Murfet IC, Beveridge CA. Mutational analysis of branching in pea. Evidence that rms1 and rms5 regulate the same novel signal. Plant Physiol. 126: 1205-1213 (2001).

Moyle R, Schrader J, Stenberg A, Olsson O, Saxena S, Sandberg G, Bhalerao RP. Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen. Plant J. 31: 675-685 (2002).

Muller A, Duchting P, Weiler EW. A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta 216: 44-56 (2002).

Muller A, Hillebrand H, Weiler EW. Indole-3-acetic acid is synthesized from L-tryptophan in roots of Arabidopsis thaliana. Planta 206: 362-369 (1998).

Muller A, Weiler EW. IAA-synthase, an enzyme complex from Arabidopsis thaliana catalyzing the formation of indole-3-acetic acid from (S)-tryptophan. Biol. Chem. 381: 679-686 (2000).

Muller A, Weiler EW. Indolic constituents and indole-3-acetic acid biosynthesis in the wild-type and a tryptophan auxotroph mutant of Arabidopsis thaliana. Planta 211: 855-863 (2000).

Murphy A, Peer WA, Taiz L. Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta 211: 315-324 (2000).

Mwange KN, Hou HW, Cui KM. Relationship between endogenous indole-3-acetic acid and abscisic acid changes and bark recovery in Eucommia ulmoides Oliv. after girdling. J. Exp. Bot. 54: 1899-1907 (2003).

Mwange KN, Hou HW, Wang YQ, He XQ, Cui KM. Opposite patterns in the annual distribution and time-course of endogenous abscisic acid and indole-3-acetic acid in relation to the periodicity of cambial activity in Eucommia ulmoides Oliv. J. Exp. Bot. 56: 1017-1028 (2005).

Nacry P, Canivenc G, Muller B, Azmi A, Van Onckelen H, Rossignol M, Doumas P. A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiol. 138: 2061-2074 (2005).

Nagpal P, Walker LM, Young JC, Sonawala A, Timpte C, Estelle M, Reed JW. AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol. 123: 563-574 (2000).

Nakamura A, Higuchi K, Goda H, Fujiwara MT, Sawa S, Koshiba T, Shimada Y, Yoshida S. Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiol. 133: 1843-1853 (2003).

Nakamura A, Nakajima N, Goda H, Shimada Y, Hayashi K, Nozaki H, Asami T, Yoshida S, Fujioka S. Arabidopsis Aux/IAA genes are involved in brassinosteroid-mediated growth responses in a manner dependent on organ type. Plant J. 45: 193-205 (2006).

Negi S, Ivanchenko MG, Muday GK. Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J. 55: 175-187 (2008).

Negrel J, Javelle F, Paynot M. Biochemical basis of resistance of tobacco callus tissue cultures to hydroxyphenylethylamines. Plant Physiol. 103: 329-334 (1993).

Nehls U, Beguiristain T, Ditengou F, Lapeyrie F, Martin F. The expression of a symbiosis-regulated gene in eucalypt roots is regulated by auxins and hypaphorine, the tryptophan betaine of the ectomycorrhizal basidiomycete Pisolithus tinctorius. Planta 207: 296-302 (1998).

Ngo P, Ozga JA, Reinecke DM. Specificity of auxin regulation of gibberellin 20-oxidase gene expression in pea pericarp. Plant Mol. Biol. 49: 439-448 (2002).

Nilsson O, Moritz T, Imbault N, Sandberg G, Olsson O. Hormonal characterization of transgenic tobacco plants expressing the rolC gene of Agrobacterium rhizogenes TL-DNA. Plant Physiol. 102: 363-371 (1993).

Normanly J, Bartel B. Redundancy as a way of life - IAA metabolism. Curr. Opin. Plant Biol. 2: 207-213 (1999).

Normanly J, Grisafi P, Fink GR, Bartel B. Arabidopsis mutants resistant to the auxin effects of indole-3-acetonitrile are defective in the nitrilase encoded by the NIT1 gene. Plant Cell 9: 1781-1790 (1997).

O'Callaghan KJ, Dixon RA, Cocking EC. Arabidopsis thaliana: a model for studies of colonization by non-pathogenic and plant-growth-promoting rhizobacteria. Aust. J. Plant Physiol. 28: 975-982 (2001).

O'Donnell PJ, Schmelz EA, Moussatche P, Lund ST, Jones JB, Klee HJ. Susceptible to intolerance--a range of hormonal actions in a susceptible Arabidopsis pathogen response. Plant J. 33: 245-257 (2003).

O'Neill DP, Ross JJ. Auxin regulation of the gibberellin pathway in pea. Plant Physiol. 130: 1974-1982 (2002).

Ogata Y, Iizuka M, Nakayama D, Ikeda M, Kamada H, Koshiba T. Possible involvement of abscisic acid in the induction of secondary somatic embryogenesis on seed-coat-derived carrot somatic embryos. Planta 221: 417-423 (2005).

Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17: 444-463 (2005).

Oono Y, Chen QG, Overvoorde PJ, Kohler C, Theologis A. age Mutants of Arabidopsis exhibit altered auxin-regulated gene expression. Plant Cell 10: 1649-1662 (1998).

Oono Y, Ooura C, Rahman A, Aspuria ET, Hayashi K, Tanaka A, Uchimiya H. p-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. Plant Physiol. 133: 1135-1147 (2003).

Ostin A, Ilic N, Cohen JD. An in vitro system from maize seedlings for tryptophan-independent indole-3-acetic acid biosynthesis. Plant Physiol. 119: 173-178 (1999).

Ostin A, Kowalyczk M, Bhalerao RP, Sandberg G. Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiol. 118: 285-296 (1998).

Ouyang J, Shao X, Li J. Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana. Plant J. 24: 327-334 (2000).

Overvoorde PJ, Okushima Y, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Liu A, Onodera C, Quach H, Smith A, Yu G, Theologis A. Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana. Plant Cell 17: 3282-3300 (2005).

Ozga JA, Reinecke DM, Ayele BT, Ngo P, Nadeau C, Wickramarathna AD. Developmental and hormonal regulation of gibberellin biosynthesis and catabolism in pea fruit. Plant Physiol. 150: 448-462 (2009).

Ozga JA, van Huizen R, Reinecke DM. Hormone and seed-specific regulation of pea fruit growth. Plant Physiol. 128: 1379-1389 (2002).

Ozga JA, Yu J, Reinecke DM. Pollination-, development-, and auxin-specific regulation of gibberellin 3beta-hydroxylase gene expression in pea fruit and seeds. Plant Physiol. 131: 1137-1146 (2003).

Pacios-Bras C, Schlaman HR, Boot K, Admiraal P, Langerak JM, Stougaard J, Spaink HP. Auxin distribution in Lotus japonicus during root nodule development. Plant Mol. Biol. 52: 1169-1180 (2003).

Pagnussat GC, Lanteri ML, Lamattina L. Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol. 132: 1241-1248 (2003).

Pagnussat GC, Lanteri ML, Lombardo MC, Lamattina L. Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol. 135: 279-286 (2004).

Pan X, Welti R, Wang X. Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 69: 1773-1781 (2008).

Pang Y, Zhang J, Cao J, Yin SY, He XQ, Cui KM. Phloem transdifferentiation from immature xylem cells during bark regeneration after girdling in Eucommia ulmoides Oliv. J. Exp. Bot. 59: 1341-1351 (2008).

Park MH, Suzuki Y, Chono M, Knox JP, Yamaguchi I. CsAGP1, a gibberellin-responsive gene from cucumber hypocotyls, encodes a classical arabinogalactan protein and is involved in stem elongation. Plant Physiol. 131: 1450-1459 (2003).

Park S, Cohen JD, Slovin JP. Strawberry fruit protein with a novel indole-acyl modification. Planta 224: 1015-1022 (2006).

Park WJ, Kriechbaumer V, Muller A, Piotrowski M, Meeley RB, Gierl A, Glawischnig E. The nitrilase ZmNIT2 converts indole-3-acetonitrile to indole-3-acetic acid. Plant Physiol. 133: 794-802 (2003).

Park WJ, Schafer A, Prinsen E, van Onckelen H, Kang BG, Hertel R. Auxin-induced elongation of short maize coleoptile segments is supported by 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one. Planta 213: 92-100 (2001).

Parry G, Ward S, Cernac A, Dharmasiri S, Estelle M. The Arabidopsis SUPPRESSOR OF AUXIN RESISTANCE proteins are nucleoporins with an important role in hormone signaling and development. Plant Cell 18: 1590-1603 (2006).

Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Feher A. The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol. 129: 1807-1819 (2002).

Patten CL, Glick BR. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42: 207-220 (1996).

Peck SC, Kende H. Differential regulation of genes encoding 1-aminocyclopropane-1-carboxylate (ACC) synthase in etiolated pea seedlings: effects of indole-3-acetic acid, wounding, and ethylene. Plant Mol. Biol. 38: 977-982 (1998).

Peck SC, Kende H. A gene encoding 1-aminocyclopropane-1-carboxylate (ACC) synthase produces two transcripts: elucidation of a conserved response. Plant J. 14: 573-581 (1998).

Pedras MSC, Nycholat CM, Montaut S, Xu YM, Khan AQ. Chemical defenses of crucifers: elicitation and metabolism of phytoalexins and indole-3-acetonitrile in brown mustard and turnip. Phytochemistry 59: 611-625 (2002).

Perez-Torres CA, Lopez-Bucio J, Cruz-Ramirez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20: 3258-3272 (2008).

Perry J, Dai X, Zhao Y. A mutation in the anticodon of a single tRNAala is sufficient to confer auxin resistance in Arabidopsis. Plant Physiol. 139: 1284-1290 (2005).

Picciarelli P, Ceccarelli N, Paolicchi F, Calistri G. Endogenous auxins and embryogenesis in Phaseolus coccineus. Aust. J. Plant Physiol. 28: 73-78 (2001).

Piotrowski M. Primary or secondary? Versatile nitrilases in plant metabolism. Phytochemistry 69: 2655-2667 (2008).

Plieth C, Trewavas AJ. Reorientation of seedlings in the earth's gravitational field induces cytosolic calcium transients. Plant Physiol. 129: 786-796 (2002).

Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK. Peroxisomal beta-oxidation. A metabolic pathway with multiple functions. Biochim. Biophys. Acta 1763: 1413-1426 (2006).

Pollmann S, Düchting P, Weiler EW. Tryptophan-dependent indole-3-acetic acid biosynthesis by 'IAA-synthase' proceeds via indole-3-acetamide. Phytochemistry 70: 523-531 (2009).

Pollmann S, Neu D, Lehmann T, Berkowitz O, Schafer T, Weiler EW. Subcellular localization and tissue specific expression of amidase 1 from Arabidopsis thaliana. Planta 224: 1241-1253 (2006).

Pollmann S, Neu D, Weiler EW. Molecular cloning and characterization of an amidase from Arabidopsis thaliana capable of converting indole-3-acetamide into the plant growth hormone, indole-3-acetic acid. Phytochemistry 62: 293-300 (2003).

Pope DG. Evidence for two indoleacetic acid-induced growth responses in the Avena straight-growth indoleacetic acid assay. Plant Physiol. 102: 409-415 (1993).

Poupard P, Brunel N, Leduc N, Viemont JD, Strullu DG, Simoneau P. Expression of a Bet v 1 homologue gene encoding a PR 10 protein in birch roots: induction by auxin and localization of the transcripts by in situ hybridization. Aust. J. Plant Physiol. 28: 57-63 (2001).

Poupart J, Rashotte AM, Muday GK, Waddell CS. The rib1 mutant of Arabidopsis has alterations in indole-3-butyric acid transport, hypocotyl elongation, and root architecture. Plant Physiol. 139: 1460-1471 (2005).

Poupart J, Waddell CS. The rib1 mutant is resistant to indole-3-butyric acid, an endogenous auxin in Arabidopsis. Plant Physiol. 124: 1739-1751 (2000).

Poutrain P, Mazars C, Thiersault M, Rideau M, Pichon O. Two distinct intracellular Ca2+-release components act in opposite ways in the regulation of the auxin-dependent MIA biosynthesis in Catharanthus roseus cells. J. Exp. Bot. 60: 1387-1398 (2009).

Qin G, Gu H, Zhao Y, Ma Z, Shi G, Yang Y, Pichersky E, Chen H, Liu M, Chen Z, Qu LJ. An indole-3-acetic acid carboxyl methyltransferase regulates Arabidopsis leaf development. Plant Cell 17: 2693-2704 (2005).

Quint M, Barkawi LS, Fan KT, Cohen JD, Gray WM. Arabidopsis IAR4 modulates auxin response by regulating auxin homeostasis. Plant Physiol. 150: 748-758 (2009).

Quirino BF, Normanly J, Amasino RM. Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes. Plant Mol. Biol. 40: 267-278 (1999).

Rahman A, Bannigan A, Sulaman W, Pechter P, Blancaflor EB, Baskin TI. Auxin, actin and growth of the Arabidopsis thaliana primary root. Plant J. 50: 514-528 (2007).

Rahman A, Nakasone A, Chhun T, Ooura C, Biswas KK, Uchimiya H, Tsurumi S, Baskin TI, Tanaka A, Oono Y. A small acidic protein 1 (SMAP1) mediates responses of the Arabidopsis root to the synthetic auxin 2,4-dichlorophenoxyacetic acid. Plant J. 47: 788-801 (2006).

Rai RK, Singh P, Shrivastava AK, Suman A. Modulation of low-temperature-induced biochemical changes in bud and root band zones of sugar cane sets by potassium, zinc, and ethrel for improving sprouting. J. Agric. Food. Chem. 56: 11976-11982 (2008).

Ramos JA, Zenser N, Leyser O, Callis J. Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent. Plant Cell 13: 2349-2360 (2001).

Rampey RA, LeClere S, Kowalczyk M, Ljung K, Sandberg G, Bartel B. A family of auxin-conjugate hydrolases that contributes to free indole-3-acetic acid levels during Arabidopsis germination. Plant Physiol. 135: 978-988 (2004).

Rapparini F, Tam YY, Cohen JD, Slovin JP. Indole-3-acetic acid metabolism in Lemna gibba undergoes dynamic changes in response to growth temperature. Plant Physiol. 128: 1410-1416 (2002).

Rashotte AM, Brady SR, Reed RC, Ante SJ, Muday GK. Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol. 122: 481-490 (2000).

Rashotte AM, Poupart J, Waddell CS, Muday GK. Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis. Plant Physiol. 133: 761-772 (2003).

Reddy SM, Pandey AK, Melayah D, Marmeisse R, Gay G. The auxin responsive gene Pp-C61 is up-regulated in Pinus pinaster roots following inoculation with ectomycorrhizal fungi. Plant Cell Environ. 26: 681-691 (2003).

Redman JC, Haas BJ, Tanimoto G, Town CD. Development and evaluation of an Arabidopsis whole genome Affymetrix probe array. Plant J. 38: 545-561 (2004).

Reed RC, Brady SR, Muday GK. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol. 118: 1369-1378 (1998).

Reinecke DM, Bandurski RS. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays. Plant Physiol. 86: 868-872 (1988).

Reinhardt D, Mandel T, Kuhlemeier C. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12: 507-518 (2000).

Reintanz B, Lehnen M, Reichelt M, Gershenzon J, Kowalczyk M, Sandberg G, Godde M, Uhl R, Palme K. bus, a Bushy Arabidopsis cyp79f1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell 13: 351-367 (2001).

Rekoslavskaya NI, Kuznetsova EV, Vysotskaya EF, Salyaev RK. Tryptophan synthase from Agrobacterium tumefaciens 8628: isolation and properties. Biochemistry (Mosc.) 62: 433-439 (1997).

Ribnicky DM, Cooke TJ, Cohen JD. A microtechnique for the analysis of free and conjugated indole-3-acetic acid in milligram amounts of plant tissue using a benchtop gas chromatograph-mass spectrometer. Planta 204: 1-7 (1998).

Rober-Kleber N, Albrechtova JT, Fleig S, Huck N, Michalke W, Wagner E, Speth V, Neuhaus G, Fischer-Iglesias C. Plasma membrane H(+)-ATPase is involved in auxin-mediated cell elongation during wheat embryo development. Plant Physiol. 131: 1302-1312 (2003).

Rock CD, Sun X. Crosstalk between ABA and auxin signaling pathways in roots of Arabidopsis thaliana (L.) Heynh. Planta 222: 98-106 (2005).

Rodrigo MJ, Lopez-Diaz I, Garcia-Martinez JL. The characterization of gio, a new pea mutant, shows the role of indoleacetic acid in the control of fruit development by the apical shoot. Plant J. 14: 83-90 (1998).

Romero-Puertas MC, McCarthy I, Gomez M, Sandalio LM, Corpas FJ, Del Rio LA, Palma JM. Reactive oxygen species-mediated enzymatic systems involved in the oxidative action of 2,4-dichlorophenoxyacetic acid. Plant Cell Environ. 27: 1135-1148 (2004).

Salmon J, Ramos J, Callis J. Degradation of the auxin response factor ARF1. Plant J. 54: 118-128 (2008).

Salopek-Sondi B, Kovac M, Prebeg T, Magnus V. Developing fruit direct post-floral morphogenesis in Helleborus niger L. J. Exp. Bot. 53: 1949-1957 (2002).

Santos HP, Purgatto E, Mercier H, Buckeridge MS. The control of storage xyloglucan mobilization in cotyledons of Hymenaea courbaril. Plant Physiol. 135: 287-299 (2004).

Satdive RK, Fulzele DP, Eapen S. Studies on production of ajmalicine in shake flasks by multiple shoot cultures of Catharanthus roseus. Biotechnol. Prog. 19: 1071-1075 (2003).

Sawa S, Ohgishi M, Goda H, Higuchi K, Shimada Y, Yoshida S, Koshiba T. The HAT2 gene, a member of the HD-Zip gene family, isolated as an auxin inducible gene by DNA microarray screening, affects auxin response in Arabidopsis. Plant J. 32: 1011-1022 (2002).

Schmelz EA, Engelberth J, Tumlinson JH, Block A, Alborn HT. The use of vapor phase extraction in metabolic profiling of phytohormones and other metabolites. Plant J. 39: 790-808 (2004).

Schmidt RC, Muller A, Hain R, Bartling D, Weiler EW. Transgenic tobacco plants expressing the Arabidopsis thaliana nitrilase II enzyme. Plant J. 9: 683-691 (1996).

Schopfer P. Determination of auxin-dependent pH changes in coleoptile cell walls by a null-point method. Plant Physiol. 103: 351-357 (1993).

Schutz A, Golbik R, Tittmann K, Svergun DI, Koch MH, Hubner G, Konig S. Studies on structure-function relationships of indolepyruvate decarboxylase from Enterobacter cloacae, a key enzyme of the indole acetic acid pathway. Eur. J. Biochem. 270: 2322-2331 (2003).

Schutz A, Sandalova T, Ricagno S, Hubner G, Konig S, Schneider G. Crystal structure of thiamindiphosphate-dependent indolepyruvate decarboxylase from Enterobacter cloacae, an enzyme involved in the biosynthesis of the plant hormone indole-3-acetic acid. Eur. J. Biochem. 270: 2312-2321 (2003).

Schwager KM, Calderon-Villalobos LI, Dohmann EM, Willige BC, Knierer S, Nill C, Schwechheimer C. Characterization of the VIER F-BOX PROTEINE genes from Arabidopsis reveals their importance for plant growth and development. Plant Cell 19: 1163-1178 (2007).

Schwalm K, Aloni R, Langhans M, Heller W, Stich S, Ullrich CI. Flavonoid-related regulation of auxin accumulation in Agrobacterium tumefaciens-induced plant tumors. Planta 218: 163-178 (2003).

Seo M, Akaba S, Oritani T, Delarue M, Bellini C, Caboche M, Koshiba T. Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana. Plant Physiol. 116: 687-693 (1998).

Sergeeva E, Liaimer A, Bergman B. Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215: 229-238 (2002).

Serrani JC, Ruiz-Rivero O, Fos M, García-Martinez JL. Auxin-induced fruit-set in tomato is mediated in part by gibberellins. Plant J. 56: 922-934 (2008).

Shen H, Chen J, Wang Z, Yang C, Sasaki T, Yamamoto Y, Matsumoto H, Yan X. Root plasma membrane H+-ATPase is involved in the adaptation of soybean to phosphorus starvation. J. Exp. Bot. 57: 1353-1362 (2006).

Shibuya K, Yoshioka T, Hashiba T, Satoh S. Role of the gynoecium in natural senescence of carnation (Dianthus caryophyllus L.) flowers. J. Exp. Bot. 51: 2067-2073 (2000).

Shin M, Shinguu T, Sano K, Umezawa C. Metabolic fates of L-tryptophan in Saccharomyces uvarum (Saccharomyces carlsbergensis). Chem. Pharm. Bull. (Tokyo) 39: 1792-1795 (1991).

Singh B, Cheek HD, Haigler CH. A synthetic auxin (NAA) suppresses secondary wall cellulose synthesis and enhances elongation in cultured cotton fiber. Plant Cell Rep. 28: 1023-1032 (2009).

Sitbon F, Astot C, Edlund A, Crozier A, Sandberg G. The relative importance of tryptophan-dependent and tryptophan-independent biosynthesis of indole-3-acetic acid in tobacco during vegetative growth. Planta 211: 715-721 (2000).

Sitbon F, Hennion S, Sundberg B, Little CHA, Olsson O, Sandberg G. Transgenic tobacco plants coexpressing the Agrobacterium tumefaciens iaaN and iaaH genes display altered growth and indoleacetic acid metabolism. Plant Physiol. 99: 1062-1069 (1992).

Sitbon F, Ostin A, Sundberg B, Olsson O, Sandberg G. Conjugation of indole-3-acetic acid (IAA) in wild-type and IAA-overprodcing transgenic tobacco plants, and identification of the main conjugates by frit-fast atom bombardment liquid chromatography-mass spectrometry. Plant Physiol. 101: 313-320 (1993).

Skirycz A, Reichelt M, Burow M, Birkemeyer C, Rolcik J, Kopka J, Zanor MI, Gershenzon J, Strnad M, Szopa J, Mueller-Roeber B, Witt I. DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Plant J. 47: 10-24 (2006).

Smets R, Le J, Prinsen E, Verbelen JP, Van Onckelen HA. Cytokinin-induced hypocotyl elongation in light-grown Arabidopsis plants with inhibited ethylene action or indole-3-acetic acid transport. Planta 221: 39-47 (2005).

Smith AP, Nourizadeh SD, Peer WA, Xu J, Bandyopadhyay A, Murphy AS, Goldsbrough PB. Arabidopsis AtGSTF2 is regulated by ethylene and auxin, and encodes a glutathione S-transferase that interacts with flavonoids. Plant J. 36: 433-442 (2003).

Smolen G, Bender J. Arabidopsis cytochrome P450 cyp83B1 mutations activate the tryptophan biosynthetic pathway. Genetics 160: 323-332 (2002).

Sorin C, Bussell JD, Camus I, Ljung K, Kowalczyk M, Geiss G, McKhann H, Garcion C, Vaucheret H, Sandberg G, Bellini C. Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Plant Cell 17: 1343-1359 (2005).

Spiro MD, Bowers JF, Cosgrove DJ. A comparison of oligogalacturonide- and auxin-induced extracellular alkalinization and growth responses in roots of intact cucumber seedlings. Plant Physiol. 130: 895-903 (2002).

Staswick PE. The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiol. 150: 1310-1321 (2009).

Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17: 616-627 (2005).

Staswick PE, Tiryaki I, Rowe ML. Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14: 1405-1415 (2002).

Steenhoudt O, Vanderleyden J. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol. Rev. 24: 487-506 (2000).

Stieger PA, Reinhardt D, Kuhlemeier C. The auxin influx carrier is essential for correct leaf positioning. Plant J. 32: 509-517 (2002).

Subramanian S, Rajagopal B, Rock CD. Harlequin (hlq) and short blue root (sbr), two Arabidopsis mutants that ectopically express an abscisic acid- and auxin-inducible transgenic carrot promoter and have pleiotropic effects on morphogenesis. Plant Mol. Biol. 49: 93-105 (2002).

Sukumar P, Edwards KS, Rahman A, Delong A, Muday GK. PINOID kinase regulates root gravitropism through modulation of PIN2-dependent basipetal auxin transport in Arabidopsis. Plant Physiol. 150: 722-735 (2009).

Sun H, Basu S, Brady SR, Luciano RL, Muday GK. Interactions between auxin transport and the actin cytoskeleton in developmental polarity of Fucus distichus embryos in response to light and gravity. Plant Physiol. 135: 266-278 (2004).

Sundberg B, Tuominen H, Little C. Effects of the indole-3-acetic acid (IAA) transport inhibitors N-1-naphthylphthalamic acid and morphactin on endogenous IAA dynamics in relation to compression wood formation in 1-year-old Pinus sylvestris (L.) shoots. Plant Physiol. 106: 469-476 (1994).

Suttle JC, Hultstrand JF. Involvement of abscisic acid in ethylene-induced cotyledon abscission in cotton seedlings. Plant Physiol. 101: 641-646 (1993).

Suzuki H, Wagner T, Tierney ML. Differential expression of two soybean (Glycine max L.) proline-rich protein genes after wounding. Plant Physiol. 101: 1283-1287 (1993).

Symons GM, Davies C, Shavrukov Y, Dry IB, Reid JB, Thomas MR. Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol. 140: 150-158 (2006).

Symons GM, Reid JB. Hormone levels and response during de-etiolation in pea. Planta 216: 422-431 (2003).

Szerszen JB, Szczyglowski K, Bandurski RS. iaglu, a gene from Zea mays involved in conjugation of growth hormone indole-3-acetic acid. Science 265: 1699-1701 (1994).

Tam YY, Epstein E, Normanly J. Characterization of auxin conjugates in Arabidopsis. Low steady-state levels of indole-3-acetyl-aspartate, indole-3-acetyl-glutamate, and indole-3-acetyl-glucose. Plant Physiol. 123: 589-596 (2000).

Tam YY, Slovin JP, Cohen JD. Selection and characterization of [alpha]-methyltryptophan-resistant lines of Lemna gibba showing a rapid rate of indole-3-acetic acid turnover. Plant Physiol. 107: 77-85 (1995).

Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J. 45: 1028-1036 (2006).

Tang W, Brady SR, Sun Y, Muday GK, Roux SJ. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport. Plant Physiol. 131: 147-154 (2003).

Tao LZ, Cheung AY, Nibau C, Wu HM. RAC GTPases in tobacco and Arabidopsis mediate auxin-induced formation of proteolytically active nuclear protein bodies that contain AUX/IAA proteins. Plant Cell 17: 2369-2383 (2005).

Tao LZ, Cheung AY, Wu HM. Plant Rac-like GTPases are activated by auxin and mediate auxin-responsive gene expression. Plant Cell 14: 2745-2760 (2002).

Tatematsu K, Kumagai S, Muto H, Sato A, Watahiki MK, Harper RM, Liscum E, Yamamoto KT. MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell 16: 379-393 (2004).

Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN, Lee OR, Richards EL, Murphy AS, Sato F, Yazaki K. PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell 17: 2922-2939 (2005).

Thomas C, Bronner R, Molinier J, Prinsen E, Van Onckelen H, Hahne G. Immuno-cytochemical localization of indole-3-acetic acid during induction of somatic embryogenesis in cultured sunflower embryos. Planta 215: 577-583 (2002).

Thomas P, Lee MM, Schiefelbein J. Molecular identification of proline-rich protein genes induced during root formation in grape (Vitis vinifera L.) stem cuttings. Plant Cell Environ. 26: 1497-1504 (2003).

Tian Q, Nagpal P, Reed JW. Regulation of Arabidopsis SHY2/IAA3 protein turnover. Plant J. 36: 643-651 (2003).

Ticconi CA, Delatorre CA, Abel S. Attenuation of phosphate starvation responses by phosphite in Arabidopsis. Plant Physiol. 127: 963-972 (2001).

Tiryaki I, Staswick PE. An Arabidopsis mutant defective in jasmonate response is allelic to the auxin-signaling mutant axr1. Plant Physiol. 130: 887-894 (2002).

Tomilov AA, Tomilova NB, Abdallah I, Yoder JI. Localized hormone fluxes and early haustorium development in the hemiparasitic plant Triphysaria versicolor. Plant Physiol. 138: 1469-1480 (2005).

Tozawa Y, Hasegawa H, Terakawa T, Wakasa K. Characterization of rice anthranilate synthase alpha-subunit genes OASA1 and OASA2. Tryptophan accumulation in transgenic rice expressing a feedback-insensitive mutant of OASA1. Plant Physiol. 126: 1493-1506 (2001).

Tsuchisaka A, Theologis A. Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol. 136: 2982-3000 (2004).

Tuominen H, Puech L, Regan S, Fink S, Olsson O, Sundberg B. Cambial-region-specific expression of the Agrobacterium iaa genes in transgenic aspen visualized by a linked uidA reporter gene. Plant Physiol. 123: 531-542 (2000).

van Huizen R, Ozga JA, Reinecke DM, Twitchin B, Mander LN. Seed and 4-chloroindole-3-acetic acid regulation of gibberellin metabolism in pea pericarp. Plant Physiol. 109: 1213-1217 (1995).

Vandenbussche F, Smalle J, Le J, Saibo NJ, De Paepe A, Chaerle L, Tietz O, Smets R, Laarhoven LJ, Harren FJ, Van Onckelen H, Palme K, Verbelen JP, Van Der Straeten D. The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin. Plant Physiol. 131: 1228-1238 (2003).

Vanneste S, De Rybel B, Beemster GT, Ljung K, De Smet I, Van Isterdael G, Naudts M, Iida R, Gruissem W, Tasaka M, Inze D, Fukaki H, Beeckman T. Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana. Plant Cell 17: 3035-3050 (2005).

Visser E, Cohen JD, Barendse G, Blom C, Voesenek L. An ethylene-mediated increase in sensitivity to auxin induces adventitious root formation in flooded Rumex palustris Sm. Plant Physiol. 112: 1687-1692 (1996).

Von Dahl CC, Baldwin IT. Methyl jasmonate and cis-jasmone do not dispose of the herbivore-induced jasmonate burst in Nicotiana attenuata. Physiol. Plant. 120: 474-481 (2004).

Vorwerk S, Biernacki S, Hillebrand H, Janzik I, Muller A, Weiler EW, Piotrowski M. Enzymatic characterization of the recombinant Arabidopsis thaliana nitrilase subfamily encoded by the NIT2/NIT1/NIT3-gene cluster. Planta 212: 508-516 (2001).

Wakasa K, Hasegawa H, Nemoto H, Matsuda F, Miyazawa H, Tozawa Y, Morino K, Komatsu A, Yamada T, Terakawa T, Miyagawa H. High-level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile. J. Exp. Bot. 57: 3069-3078 (2006).

Walsh TA, Neal R, Merlo AO, Honma M, Hicks GR, Wolff K, Matsumura W, Davies JP. Mutations in an auxin receptor homolog AFB5 and in SGT1b confer resistance to synthetic picolinate auxins and not to 2,4-dichlorophenoxyacetic acid or indole-3-acetic acid in Arabidopsis. Plant Physiol. 142: 542-552 (2006).

Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latche A, Pech JC, Bouzayen M. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17: 2676-2692 (2005).

Watahiki MK, Yamamoto KT. The massugu1 mutation of Arabidopsis identified with failure of auxin-induced growth curvature of hypocotyl confers auxin insensitivity to hypocotyl and leaf. Plant Physiol. 115: 419-426 (1997).

Weijers D, Sauer M, Meurette O, Friml J, Ljung K, Sandberg G, Hooykaas P, Offringa R. Maintenance of embryonic auxin distribution for apical-basal patterning by PIN-FORMED-dependent auxin transport in Arabidopsis. Plant Cell 17: 2517-2526 (2005).

Werner M, Uehlein N, Proksch P, Kaldenhoff R. Characterization of two tomato aquaporins and expression during the incompatible interaction of tomato with the plant parasite Cuscuta reflexa. Planta 213: 550-555 (2001).

Wolbang CM, Chandler PM, Smith JJ, Ross JJ. Auxin from the developing inflorescence is required for the biosynthesis of active gibberellins in barley stems. Plant Physiol. 134: 769-776 (2004).

Wolbang CM, Ross JJ. Auxin promotes gibberellin biosynthesis in decapitated tobacco plants. Planta 214: 153-157 (2001).

Woltering EJ, Balk PA, Nijenhuis-Devries MA, Faivre M, Ruys G, Somhorst D, Philosoph-Hadas S, Friedman H. An auxin-responsive 1-aminocyclopropane-1-carboxylate synthase is responsible for differential ethylene production in gravistimulated Antirrhinum majus L. flower stems. Planta 220: 403-413 (2005).

Woo YM, Park HJ, Su'udi M, Yang JI, Park JJ, Back K, Park YM, An G. Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol. Biol. 65: 125-136 (2007).

Woodward C, Bemis SM, Hill EJ, Sawa S, Koshiba T, Torii KU. Interaction of auxin and ERECTA in elaborating Arabidopsis inflorescence architecture revealed by the activation tagging of a new member of the YUCCA family putative flavin monooxygenases. Plant Physiol. 139: 192-203 (2005).

Wright AD, Sampson MB, Neuffer MG, Michalczuk L, Slovin JP, Cohen JD. Indole-3-acetic acid biosynthesis in the mutant maize orange pericarp, a tryptophan auxotroph. Science 254: 998-1000 (1991).

Wu XQ, Li XG, Zhang XS. Molecular analysis of hormone-regulated petal regeneration in Petunia. Plant Cell Rep. 27: 1169-1176 (2008).

Wubben MJ 2nd, Rodermel SR, Baum TJ. Mutation of a UDP-glucose-4-epimerase alters nematode susceptibility and ethylene responses in Arabidopsis roots. Plant J. 40: 712-724 (2004).

Xu X, van Lammeren AA, Vermeer E, Vreugdenhil D. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol. 117: 575-584 (1998).

Yamazoe A, Hayashi K, Kepinski S, Leyser O, Nozaki H. Characterization of terfestatin a, a new specific inhibitor for auxin signaling. Plant Physiol. 139: 779-789 (2005).

Yamazoe S, Hasegawa K, Shigemori H. Growth inhibitory indole acetic acid polyacetylenic ester from Japanese ivy (Hedera rhombea Bean). Phytochemistry 68: 1706-1711 (2007).

Yang J, Zhang J, Wang Z, Zhu Q, Wang W. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol. 127: 315-323 (2001).

Yang T, Law DM, Davies PJ. Magnitude and kinetics of stem elongation induced by exogenous indole-3-acetic acid in intact light-grown pea seedlings. Plant Physiol. 102: 717-724 (1993).

Yanni YG, Rizk RY, Abd El-Fattah FK, Squartini A, Corich V, Giacomini A, de Bruijn F, Rademaker J, Maya-Flores J, Ostrom P, Vega-Hernandez M, Hollingsworth RI, Martinez-Molina E, Mateos P, Velazquez E, Wopereis J, Triplett E, Umali-Garcia M, et al. The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust. J. Plant Physiol. 28: 845-870 (2001).

Yasuor H, Abu-Abied M, Belausov E, Madmoni A, Sadot E, Riov J, Rubin B. Glyphosate-induced anther indehiscence in cotton is partially temperature-dependent and involves cytoskeleton and secondary wall modifications and auxin accumulation. Plant Physiol. 141: 1306-1315 (2006).

Yau CP, Wang L, Yu M, Zee SY, Yip WK. Differential expression of three genes encoding an ethylene receptor in rice during development, and in response to indole-3-acetic acid and silver ions. J. Exp. Bot. 55: 547-556 (2004).

Yi HC, Joo S, Nam KH, Lee JS, Kang BG, Kim WT. Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in mung bean (Vigna radiata L.). Plant Mol. Biol. 41: 443-454 (1999).

Yin C, Gan L, Ng D, Zhou X, Xia K. Decreased panicle-derived indole-3-acetic acid reduces gibberellin A1 level in the uppermost internode, causing panicle enclosure in male sterile rice Zhenshan 97A. J. Exp. Bot. 58: 2441-2449 (2007).

Yu XC, Li MJ, Gao GF, Feng HZ, Geng XQ, Peng CC, Zhu SY, Wang XJ, Shen YY, Zhang DP. Abscisic acid stimulates a calcium-dependent protein kinase in grape berry. Plant Physiol. 140: 558-579 (2006).

Zanetti ME, Terrile MC, Arce D, Godoy AV, Segundo BS, Casalongue C. Isolation and characterization of a potato cDNA corresponding to a 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene differentially activated by stress. J. Exp. Bot. 53: 2455-2457 (2002).

Zang YX, Lim MH, Park BS, Hong SB, Kim DH. Metabolic engineering of indole glucosinolates in Chinese cabbage plants by expression of Arabidopsis CYP79B2, CYP79B3, and CYP83B1. Mol. Cells 25: 231-241 (2008).

Zazimalova E, Napier RM. Points of regulation for auxin action. Plant Cell Rep. 21: 625-634 (2003).

Zdunek-Zastocka E. Molecular cloning, characterization and expression analysis of three aldehyde oxidase genes from Pisum sativum L. Plant Physiol. Biochem. 46: 19-28 (2008).

Zettl R, Schell J, Palme K. Photoaffinity labeling of Arabidopsis thaliana plasma membrane vesicles by 5-azido-[7-3H]indole-3-acetic acid: identification of a glutathione S-transferase. Proc. Natl. Acad. Sci. U.S.A. 91: 689-693 (1994).

Zhang ZB, Yang G, Arana F, Chen Z, Li Y, Xia HJ. Arabidopsis inositol polyphosphate 6-/3-kinase (AtIpk2beta) is involved in axillary shoot branching via auxin signaling. Plant Physiol. 144: 942-951 (2007).

Zhao H, Hertel R, Ishikawa H, Evans ML. Species differences in ligand specificity of auxin-controlled elongation and auxin transport: comparing Zea and Vigna. Planta 216: 293-301 (2002).

Zhao N, Guan J, Lin H, Chen F. Molecular cloning and biochemical characterization of indole-3-acetic acid methyltransferase from poplar. Phytochemistry 68: 1537-1544 (2007).

Zhuang X, Jiang J, Li J, Ma Q, Xu Y, Xue Y, Xu Z, Chong K. Over-expression of OsAGAP, an ARF-GAP, interferes with auxin influx, vesicle trafficking and root development. Plant J. 48: 581-591 (2006).

Zhuang X, Xu Y, Chong K, Lan L, Xue Y, Xu Z. OsAGAP, an ARF-GAP from rice, regulates root development mediated by auxin in Arabidopsis. Plant Cell Environ. 28: 147-156 (2005).

Zocchi G, Rabotti G. Calcium transport in membrane vesicles isolated from maize coleoptiles. Effect of indoleacetic acid and fusicoccin. Plant Physiol. 101: 135-139 (1993).

Zolman BK, Nyberg M, Bartel B. IBR3, a novel peroxisomal acyl-CoA dehydrogenase-like protein required for indole-3-butyric acid response. Plant Mol. Biol. 64: 59-72 (2007).

Zolman BK, Silva ID, Bartel B. The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid beta-oxidation. Plant Physiol. 127: 1266-1278 (2001).

Zubieta C, Ross JR, Koscheski P, Yang Y, Pichersky E, Noel JP. Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. Plant Cell 15: 1704-1716 (2003).

Number of references = 394

| PubMed Search | Entrez Protein Search | ISI Web of Knowledge Search | Scirus Search |

David Rhodes
Department of Horticulture & Landscape Architecture
Horticulture Building
625 Agriculture Mall Drive
Purdue University
West Lafayette, IN 47907-2010
Last Update: 10/01/09